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Causality in Ancient Greek Philosophy

I would rather discover one causal law than be King of

Persia.

— Democritus

We have knowledge of a thing only when we have

grasped its cause.

— Aristotle, Posterior Analytics

We do not have knowledge of a thing until we have

grasped its why, that is to say, its cause.

— Aristotle, Physics



Questions on Causation

I Relevant questions about causation:
I the philosophical meaningfulness of the notion of causation
I deducing the causes of a given effect
I understanding the details of causal mechanism

I Here we focus on measuring the effects of causes, where

statistics arguably can contribute most

I Several statistical frameworks
I potential outcomes (J Neyman, DB Rubin)
I causal diagrams (J Pearl)



Association versus Causation

I The research questions that motivate most studies in

statistics-based sciences are causal in nature.

I The aim of standard statistical analysis is to infer

associations among variables

I Causal analysis goes one step further; its aim is to infer

aspects of the data generating process

I In most cases, Association does not imply causation:

behind every causal conclusion there must lie some causal

assumption that is not testable.



Notations

I Treatment (e.g. intervention, exposure) W : we will mostly

focus on binary treatments

I Outcome (e.g. disease status) Y

I Observed covariates or confounders X

I Unobserved covariates or confounders U

I Examples of question of interest
I Causal effect of exposure on disease
I Comparative effectiveness research: whether one drug or

medical procedure is better than the other
I Program evaluation in economics and policy



Confounding

I Confounding (or common cause) is the main

complication/hurdle between association and causation

I Two Directed Acyclic Graphs (Pearl 1995)

Cause relationship:

W // Y

Confounding:

confounder

yy %%
W Y



A Classic Example—Smoking and Lung Cancer
Doll and Hill (1950 BMJ)

Figure: Sir Austin
Bradford Hill
(1897–1991)

I Smoking-cancer association

I Case-control study of lung cancer

I Risk ratio ≈ odds ratio, is roughly 9

even after adjusting for observed

covariates:

RRobs
WY =

Pr(Y = 1 |W = 1)
Pr(Y = 1 |W = 0)

≈ 9

I Does smoking cause lung cancer?

I Box (2013) stopped smoking after

seeing Doll and Hill (1950)



A Classic Example—Smoking and Lung Cancer

Figure: Sir Ronald
Aylmer Fisher
(1890–1962)

I Association does not imply

causation

I “Common cause” (Reichenbach

1956, Fisher 1957 BMJ)

I Fisher (1957 BMJ):

cigarette-smoking and lung

cancer, though not mutually

causative, are both influenced

by a common cause, in this

case the individual genotype.



Simpson’s paradox: Kidney Stone Treatment
(Charig et al., BMJ, 1986)

I An extreme example of confounding is Simpson’s paradox:
confounder reverses the sign of the correlation between
treatment and outcome

I Compare the success rates of two treatments for kidney stones

I Treatment A: open surgery; treatment B: small puncture

Treatment A Treatment B
Small stones 93% (81/87) 87% (234/270)
Large stones 73% (192/263) 69% (55/80)

Both 78% (273/350) 83% (289/350)

I What is the confounder here? Severity of the case



Potential Outcome Framework

I The Potential Outcome Framework: the most widely used

framework across many disciplines

I Brief history
I Randomized experiments: Fisher (1918, 1925), Neyman

(1923)
I Formulation (assignment mechanism and Bayesian model):

Rubin (1974, 1977, 1978)
I Observational studies and propensity scores: Rosenbaum

and Rubin (1983)
I Connecting to instrumental variables: Angrist, Imbens and

Rubin (1996)



Potential Outcome Framework: Key Components

I No causation without manipulation: a “cause” must be

(hypothetically) manipulatable, e.g., intervention, treatment

I Goal: estimate the effects of “cause”, not causes of effect

I Three integral components (Rubin, 1978):
I potential outcomes: corresponding to the various levels of a

treatment
I assignment mechanisms
I a model for the potential outcomes and covariates

I Causal effects: a comparison of the potential outcomes

under treatment and control for the same set of units



Setup

I Data: a random sample of N units from a target population

I A treatment with two levels: w = 0,1

I For each unit i , we observe the (binary) treatment status

Wi , a vector of covariates Xi , and an outcome Y obs
i

I For each unit i , two potential outcomes Yi(0),Yi(1) –

implicitly invoke the Stable Unit Treatment Value

Assumption (SUTVA)

I Causal estimands, e.g. Average treatment effect (ATE):

τ = E[Yi(1)− Yi(0)].



The Fundamental Problem of Causal Inference
Holland, 1986, JASA

I For each unit, we can observe at most one of the two

potential outcomes, the other is missing (counterfactual?)

I Causal inference under the potential outcome framework is

essentially a missing data problem

I To identify causal effects from observed data, one must

make additional (structural or/and stochastic) assumptions

I Key identifying assumptions are on assignment

mechanism: the probabilistic rule that decides which unit

gets assigned to which treatment



Perfect Doctor

Potential Outcomes Observed Data

Y (0) Y (1) W Y (0) Y (1)

13 14 1 ? 14

6 0 0 6 ?

4 1 0 4 ?

5 2 0 5 ?

6 3 0 6 ?

6 1 0 6 ?

8 10 1 ? 10

8 9 1 ? 9

True Observed
averages 7 5 averages 5.4 11



Two key assumptions
Rosenbaum and Rubin, 1983, Biometrika

I Strong ignorability is the key assumption, consisting of

I Assumption 1 (Positivity (a.k.a. overlap)): each unit has no
zero probability of receiving either treatment

I Assumption 2 (Unconfoundedness (a.k.a. ignorability)): no
unmeasured confounders; if two groups have the same
distribution of observed covariates, the treatment
assignment is random

I Positivity is testable, but unconfoundedness is generally

not



Overlap and Balance
I Under unconfoundedness, the causal effects are identified

from the observed data:
1. First conditional on subpopulations with covariate balance

(via e.g., randomization, or matching, stratification),
calculate the difference between treatment and control
groups

2. Average over all such subpopulations (X )

I The key is to obtain covariate overlap and balance

between groups

I Balance of confounders (observed and unobserved) play a

central role in causal inference

I Observed difference in outcomes might be purely due to

the imbalance of confounders between groups



Classification of assignment mechanisms

I Randomized experiments:
I strong ignorability automatically holds
I good balance is (in large samples) guaranteed

I Unconfounded observational studies
I strong ignorability is assumed
I balance need to be achieved

I Quasi-experiments: looking for “natural" experiments

(under assumptions)



Randomized Experiments

I In randomized experiments, assignment mechanism is

known and controlled by investigators

I Strong ignorability automatically holds

I Randomization does:
I balance observed covariates

I balance unobserved covariates

I balance potential outcomes, i.e. guarantee
unconfoundedness



Role of Randomization

I Under randomization, causal effects are identified by the

difference in the outcome between the treatment and

control groups

I Under randomization, association does imply causation (of

course within the potential outcome framework with

assumptions)



Chance Imbalance in Randomized Experiments

I Randomization “should” balance all covariates (observed

and unobserved) on average...

I But covariates may be imbalanced by random chance

I Why is covariate balance important in randomized

experiments?

I Because better balance
I Provides more meaningful estimates of the causal effect

I Increases power, particularly if imbalanced covariates
correlated with outcome



Covariate Balance in Randomized Experiments

I Option 1: force better balance on important covariates by
design –“Block what you can; randomize what you cannot”
(George Box)

I stratified randomized experiments
I paired randomized experiments
I rerandomization

I Option 2: correct imbalance in covariates by analysis
I outcome: gain scores
I separate analysis within subgroups
I covariate adjustment via regression or weighting



Randomized Experiments: Complications

I Noncompliance

I Loss to follow-up

I Truncation due to “death", e.g. patients died before end of

study on life quality

I Generalize to wider population

I Ethical and practical constraints: clinical equipoise,

sequential trials, pragmatic trials



Observational Studies

I In observational studies, we do not control or know the

treatment assignment mechanism

I Measured and unmeasured confounders: usually

unbalanced between groups

I Self-selection to treatment is prevalent

I Must make (often untestable) structural assumptions on

assignment mechanism to identify causal effects

I Strong Ignorability is not guaranteed but usually assumed

in the vast majority of observational studies



Example: Framingham Heart Study
(Thomas, Lorenzi, et al. 2018)

I Goal: evaluate the effect of statins on health outcomes

I Patients: cross-sectional population from the offspring

cohort with a visit 6 (1995-1998)

I Treatment: statin use at visit 6 vs. no statin use

I Outcomes: CV death, myocardial infarction (MI), stroke

I Confounders: sex, age, body mass index, diabetes,

history of MI, history of PAD, history of stroke...

I Significant imbalance between treatment and control

groups in covariates





Regression Adjustment

I Need to adjust difference in the outcomes due to the

differences in covariates

I Most commonly via a regression model:

Y ∼ a + bW + cX + dW · X

I Potential problems
I Regression itself does not take care of lack of overlap or

balance

I In regions where the groups do not have covariate overlap,
causal estimation is purely based on extrapolation

I Sensitivity to model-specification



Strategies to Reduce Model Sensitivity
I To mitigate model dependence, two strategies: (1) design -

balance covariates, (2) analysis- flexible models

I Best strategy is to use both jointly: first balance covariates

in the design stage, then use flexible models in the

analysis stage

I Balance covariates
I Stratification or matching
I Propensity score methods

I Flexible models
I Semiparametric models (e.g., power series)
I Machine learning methods (e.g., tree-based methods

(CART, random forest), boosting)
I Bayesian non- and semi parametric models (e.g., Gaussian

Processes, BART, Dirichlet Processes mixtures)



Balancing covariates: small number of covariates

I When the number of covariates is small, the adjustment

can be achieved by exact matching or stratification

I Exact matching: for each treated subject, get a control with

exact same value of the covariate

I Exact matching ensures distributions of covariates in

treatment and control groups are exactly the same, thus

eliminate bias due to difference in X

I Exact matching is usually infeasible, even with

low-dimensional covariates



Matching

I Regression estimators impute the missing potential

outcomes using the estimated regression function

I Matching estimators also impute the missing potential

outcomes, but do so using only the outcomes of nearest

neighbours of the opposite treatment group (similar to

nonparametric kernel regression methods)

I Matching is often (but not exclusively) been applied in

settings where there is a large reservoir of potential

controls



Matching: Dimensional Reduction

I Matching is good, but...

I What if there is a large number of covariates? With just 20

binary covariates, there are 220 or about a million covariate

patterns

I Direct matching or stratification is nearly impossible

I Need dimensional reduction: propensity score



Propensity score
Rosenbaum and Rubin, 1983, Biometrika

I The propensity score e(x): the probability of a unit

receiving a treatment given covariates

I Two key properties

1. The propensity score e(X ) balances the distribution of all
observed covariates X between the treatment groups

2. If the treatment is unconfounded given X , then the
treatment is unconfounded given e(X )



Propensity score

I Propensity score is a scalar summary (summary statistic)

of the covariates w.r.t. the assignment mechanism

I Propensity score is central to ensure balance and overlap

I The propensity score balances the observed covariates,

but does not generally balance unobserved covariates

I In most observational studies, the propensity score e(X ) is

unknown and thus needs to be estimated



Propensity score: analysis procedure

Propensity score analysis typically involves two stages:

Stage 1 Estimate the propensity score, by e.g. a logistic regression

or a machine learning method

Stage 2 Given the estimated propensity score, estimate the causal
effects through one of these methods:

I Stratification
I Weighting
I Matching
I Regression
I Mixed procedure of the above



Propensity score analysis workflow



Propensity score matching

I Special case of matching: the distance metric is the

(estimated) propensity score

I 1-to-n nearest neighbor matching is common when the

control group is large compared to treatment group

I Pros: intuitive, robust, matched pairs, balance distributions

in directions uncorrelated to estimated PS

I Cons
I much tuning: with or without replacement, 1-to-1 or 1-to-n,

caliper, ties
I programming is hard
I difficult to extend to complex situations: sequential

treatments, multi-valued treatments



Propensity score weighting
Li, Morgan, Zaslavsky, 2018, JASA

I Another popular approach is (propensity score) weighting

I Main idea: re-weigh the treatment and control groups to

create a pseudo-population—the target population—where

the two groups are balanced, in expectation

I A general class of balancing weights

I Different weighting schemes: different target population

and causal estimands

I One should choose the target population a priori



Propensity score weighting: two schemes

I Inverse probability weights (IPW)
I Weigh each unit by the inverse of its probability of being

assigned to the current group

I Target population: the population that the study sample is
presentative of

I But what if the sample is a convenience sample?

I Overlap weights (Li, Morgan, Zaslavsky, 2018, JASA)
I Weigh each unit by its probability of being assigned to the

opposite group

I Target population: the population with the most overlap in
characteristics between groups (clinical equipoise)

I Overlap weights give exact balance of covariates



Framingham revisited: weighted distribution



Results: composite of non-death endpoints

Figure: IPW 1: No trimming; IPW 2: trimming ps between (.10, 0.90);
IPW 3: asymmetric trimming 5th% ps of trt, 95th% of ps for control



Sensitivity analysis

I Unconfoundedness is inherently untestable (unknown

unknowns)

I One should always perform sensitivity analysis to assess

how sensitive the causal analysis is to violation to

unconfoundedness

I Sensitivity is different from testing, more of a “insurance”

check

I Sensitivity analysis in causal inference dates back to the

Hill-Fisher debate on causation between smoking and lung

cancer, and first formalized in Cornfield (1959, JNCI)



Smoking and Lung Cancer: Revisited
Cornfield et al., 1959, JNCI

Common cause

hypothesis

U

~~ ��
W Y

I Smoking W

I Lung cancer Y

I Genetic factor U

I Fisher argued the association

between smoking and lung

cancer may be due to a

common gene that causes both

I Cornfield showed: assuming

Fisher is right, the

smoking-gene association must

satisfy: RRWU ≥ RRWY ≈ 9

I Such a genetic confounder is

too strong to be realistic

I Thus, here association must be

due to causal



Sensitivity analysis

I Fundamental ideas
I Check what would happen to the same analysis had there

was an unmeasured confounder? (Rosenbaum and Rubin,
1983b)

I Or, how strong an unmeasured confounder has to be to
explain away the observed effects? (E-value) (Ding and
VanderWeele, 2014, 2016, 2016)

I Seldom done in substantive field, but should always be

checked



Quasi-Experiments

I Leverage the variation in treatment assignment resulted

from nature or policy

I Three main categories
I Instrumental variables (IV)

I Regression discontinuity designs (RDD)

I Difference-in-Differences (DiD)



Instrumental Variables

I An instrumental variable (IV): a variable that has a causal

effect on the treatment, but (is assumed to) have no

“direct” causal effect on the outcome

IV

}}
W // Y

X

aa >>



IV Example 1: Season of Birth
Angrist and Krueger, 1991, Quarterly Journal of Economics

I Goal: evaluate the effect of schooling on earnings

I Challenge: Relationship between year of schooling and

earnings is highly confounded by factors like family

social-economics status

I IV: quarter of the year of birth

I Main idea
I When one was born in the year is largely randomized, by

nature; it should not affect one’s later earnings directly

I It does directly affects when a child first attended school,
and in combination with the compulsory education
requirement, this can create up to one year of difference in
schooling



IV Example 2: Distance to Hospitals
McClellan, McNeil, Newhouse, 1994, JAMA

I Goal: evaluate the effect of intensive treatment of acute MI

on mortality

I Challenge: Relationship between receiving intensive

treatment and mortality among AMI patients is highly

confounded by factors like case severity

I IV: distance to the closest hospital

I Main idea
I Where one lives is largely randomized; it should not directly

affect one’s survival following AMI

I It does directly affect what type of hospitals (high vs. low
volume and treatment availability) the patient first went, this
in turns affects which treatment the patient received



Two-stage Least Square (TSLS) Estimator
I Traditional model:

Yi = β0 + β1Wi + β2Xi + εi .

where β1 is the causal effect
I Direct OLS estimate of β1 is biased

I With IV, we can fit a two-stage least square (2SLS)

regression to estimate β1:

M1 : Yi = π10 + π11Zi + π12Xi + ui

M2 : Wi = π20 + π21Zi + π22Xi + vi

I The 2SLS estimate of β1 is a ratio:

β̂2sls
1 = π̂11/π̂21



Instrumental Variables: Assumptions

I IVs, when available, are extremely useful tools to draw

causal inference

I But, good IVs are hard to come by

I A good IV must satisfy two conditions (assumptions)

1. Have a strong effect on the treatment, o.w. the estimate will
have large variance

2. Not have any direct effect on the outcome, o.w. has the
same endogenous problem as the treatment

I Still one of the most popular causal inference methods



Regression discontinuity design (RDD)

I Regression discontinuity designs: the treatment status

changes discontinuously according to some underlying

pre-treatment variable – the running variable

I Basic idea: comparing units with similar values of the

running variable, but different levels of treatment would

lead to causal effect of the treatment at the threshold

I The discontinuity is often created by a pre-fixed, artificial

threshold of a policy

I Treatment among the subjects around the threshold can be

viewed as locally randomized



RDD Example: Financial Aid and Dropout
Li, Mattei, Mealli, 2015, AOAS

I Goal: evaluate the effect of financial aid on preventing

dropout in Italian colleges

I Challenge: students who received aids and who did not

are different in observed and unobserved ways

I Running variable: family wealth – eligibility to financial aid

depends solely on whether the family wealth is above or

below a fixed threshold

I Main idea
I Arguably students whose family wealth are just above and

just below the threshold are comparable in their background
I The artificial threshold set by the administration creates a

“local randomization" of treatment around the threshold



Sharp RDD

I The treatment status is a deterministic step function of a

running variable

Forcing variable (S)
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I Focus on causal effects of the treatment at the threshold

I A jump in s0 is interpreted as causal effect



Fuzzy RDD
I A value of the running variable falling above or below the

threshold acts as encouragement to take the treatment

Forcing variable (S)
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I In fuzzy RDDs, the receipt of the treatment depends also

on individual choices, raising non-ignorability issues

I Fuzzy RDDs are related to IV: falling above or below the

threshold can be viewed as an instrument



RDD: assumption and limitationss

I Key assumption: continuity at the threshold or local

randomization

I Key to analysis: identify a small window around the

threshold where local randomization is reasonable

I Limitations
I Treatment effect local to the threshold, how generalizable?

I Manipulation of the running variable



Difference-in-Differences (DiD)
I A treatment-control comparison is not necessarily a causal

comparison because of the potential systematic

differences between two groups

I A unit is arguably the “best match” for itself

I A before-after comparison (of the same units) is not

necessarily a causal comparison because of the potential

change in time

I Difference-in-Differences (DiD) design combines both:

before-after treatment-control comparison

I Setup: two or more groups, with units observed in two or

more periods. In some periods and some groups are

exposed to the treatment



DiD Example: Minimum wages and Employment
Card and Krueger, 1994, American Economic Review

I Goal: study the effect of increase in minimum wage on

employment

I Units: fast-food restaurants in New Jersey and adjacent

eastern PA

I Intervention: raise of the state minimum wage; NJ raised

the minimum on April 1, 1992, but PA not

I Outcome: number of FTE per restaurant, observed in both

areas, and both right-before and after the change

I Main idea:
I The restaurants near the state border are arguably similar
I Variation in treatment created by discontinuity in time

(policy change) and space (state border)



DiD: Parallel Trend Assumption
I Key assumption: Parallel trend – treatment and the control

group experience the same trends in the absence of

treatment

Figure: Graph illustration. Angrist and Pischke, 2009: Mostly
Harmless Econometrics



DiD: Limitations and Alternatives

I Analysis is usually done via a fixed-effects regression

model (time-specific and unit-specific effects)

I Limitations
I Parallel trend is untestable and may be implausible
I Scale-dependent: parallel trend for Y does not transfer to

log Y
I Serial correlation between observations

I Alternatives: unconfoundedness conditional on past

outcomes and covariates

I Uncounfoundedness is also untestable



Final words

I Causal inference is hard, but fundamental and exciting

I The potential outcome framework

I Make and check assumptions

I Design is the key

I Many open questions
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