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Causality in Ancient Greek Philosophy

| would rather discover one causal law than be King of
Persia.
— Democritus

We have knowledge of a thing only when we have
grasped its cause.
— Avristotle, Posterior Analytics

We do not have knowledge of a thing until we have
grasped its why, that is to say, its cause.
— Aristotle, Physics



Questions on Causation

» Relevant questions about causation:

» the philosophical meaningfulness of the notion of causation
» deducing the causes of a given effect
» understanding the details of causal mechanism

» Here we focus on measuring the effects of causes, where
statistics arguably can contribute most

» Several statistical frameworks

» potential outcomes (J Neyman, DB Rubin)
» causal diagrams (J Pearl)



Association versus Causation

» The research questions that motivate most studies in
statistics-based sciences are causal in nature.

» The aim of standard statistical analysis is to infer
associations among variables

» Causal analysis goes one step further; its aim is to infer
aspects of the data generating process

» In most cases, Association does not imply causation:
behind every causal conclusion there must lie some causal
assumption that is not testable.



Notations

» Treatment (e.g. intervention, exposure) W: we will mostly
focus on binary treatments

v

Outcome (e.g. disease status) Y

v

Observed covariates or confounders X

v

Unobserved covariates or confounders U

v

Examples of question of interest
» Causal effect of exposure on disease
» Comparative effectiveness research: whether one drug or
medical procedure is better than the other
» Program evaluation in economics and policy



Confounding

» Confounding (or common cause) is the main
complication/hurdle between association and causation

» Two Directed Acyclic Graphs (Pearl 1995)
Cause relationship: Confounding:

confounder

N N




A Classic Example—Smoking and Lung Cancer

Doll and Hill (1950 BMJ)

Figure: Sir Austin
Bradford Hill
(1897-1991)

Smoking-cancer association
Case-control study of lung cancer

Risk ratio ~ odds ratio, is roughly 9
even after adjusting for observed
covariates:

Pr(Y=1|W=1) _
Pr(Y=1|W=0) "

RR{S = 9

Does smoking cause lung cancer?

Box (2013) stopped smoking after
seeing Doll and Hill (1950)



A Classic Example—Smoking and Lung Cancer

Figure: Sir Ronald
Aylmer Fisher
(1890-1962)

» Association does not imply

causation

“Common cause” (Reichenbach
1956, Fisher 1957 BMJ)

Fisher (1957 BMJ):

cigarette-smoking and  lung
cancer, though not mutually
causative, are both influenced
by a common cause, in this
case the individual genotype.



Simpson’s paradox: Kidney Stone Treatment
(Charig et al., BMJ, 1986)

» An extreme example of confounding is Simpson’s paradox:
confounder reverses the sign of the correlation between
treatment and outcome

» Compare the success rates of two treatments for kidney stones

» Treatment A: open surgery; treatment B: small puncture

Treatment A Treatment B
Small stones | 93% (81/87) 87% (234/270)
Large stones | 73% (192/263) | 69% (55/80)
Both 78% (273/350) | 83% (289/350)

» What is the confounder here? Severity of the case




Potential Outcome Framework

» The Potential Outcome Framework: the most widely used
framework across many disciplines

» Brief history

» Randomized experiments: Fisher (1918, 1925), Neyman
(1923)

» Formulation (assignment mechanism and Bayesian model):
Rubin (1974, 1977, 1978)

» Observational studies and propensity scores: Rosenbaum
and Rubin (1983)

» Connecting to instrumental variables: Angrist, Imbens and
Rubin (1996)



Potential Outcome Framework: Key Components

» No causation without manipulation: a “cause” must be
(hypothetically) manipulatable, e.g., intervention, treatment

» Goal: estimate the effects of “cause”, not causes of effect

» Three integral components (Rubin, 1978):

» potential outcomes: corresponding to the various levels of a
treatment

» assignment mechanisms

» a model for the potential outcomes and covariates

» Causal effects: a comparison of the potential outcomes
under treatment and control for the same set of units



Setup

v

Data: a random sample of N units from a target population
A treatment with two levels: w =0, 1

For each unit i, we observe the (binary) treatment status
Wi, a vector of covariates X;, and an outcome Y?°s

For each unit /, two potential outcomes Y;(0), Yi(1) —
implicitly invoke the Stable Unit Treatment Value
Assumption (SUTVA)

Causal estimands, e.g. Average treatment effect (ATE):
T =E[Y;(1) = Yi(0)].



The Fundamental Problem of Causal Inference
Holland, 1986, JASA

» For each unit, we can observe at most one of the two
potential outcomes, the other is missing (counterfactual?)

» Causal inference under the potential outcome framework is
essentially a missing data problem

» To identify causal effects from observed data, one must
make additional (structural or/and stochastic) assumptions

» Key identifying assumptions are on assignment
mechanism: the probabilistic rule that decides which unit
gets assigned to which treatment



Perfect Doctor

Potential Outcomes Observed Data
Y(0) Y(1) W Y(0) Y(1)
13 14 1 ? 14
6 0 0 6 ?
4 1 0 4 ?
5 2 0 5 ?
6 3 0 6 ?
6 1 0 6 ?
8 10 1 ? 10
8 9 1 ? 9
True Observed
averages 7 5 averages 54 11



Two key assumptions

Rosenbaum and Rubin, 1983, Biometrika

» Strong ignorability is the key assumption, consisting of

» Assumption 1 (Positivity (a.k.a. overlap)): each unit has no
zero probability of receiving either treatment

» Assumption 2 (Unconfoundedness (a.k.a. ignorability)): no
unmeasured confounders; if two groups have the same
distribution of observed covariates, the treatment
assignment is random

» Positivity is testable, but unconfoundedness is generally
not



Overlap and Balance

» Under unconfoundedness, the causal effects are identified
from the observed data:
1. First conditional on subpopulations with covariate balance
(via e.g., randomization, or matching, stratification),
calculate the difference between treatment and control
groups
2. Average over all such subpopulations (X)
» The key is to obtain covariate overlap and balance
between groups

» Balance of confounders (observed and unobserved) play a
central role in causal inference

» Observed difference in outcomes might be purely due to
the imbalance of confounders between groups



Classification of assignment mechanisms

» Randomized experiments:

» strong ignorability automatically holds
» good balance is (in large samples) guaranteed

» Unconfounded observational studies

» strong ignorability is assumed
» balance need to be achieved

» Quasi-experiments: looking for “natural” experiments
(under assumptions)



Randomized Experiments

» In randomized experiments, assignment mechanism is
known and controlled by investigators

» Strong ignorability automatically holds
» Randomization does:

» balance observed covariates

» balance unobserved covariates

» balance potential outcomes, i.e. guarantee
unconfoundedness



Role of Randomization

» Under randomization, causal effects are identified by the
difference in the outcome between the treatment and
control groups

» Under randomization, association does imply causation (of
course within the potential outcome framework with
assumptions)



Chance Imbalance in Randomized Experiments

v

Randomization “should” balance all covariates (observed
and unobserved) on average...

v

But covariates may be imbalanced by random chance

v

Why is covariate balance important in randomized
experiments?

Because better balance
» Provides more meaningful estimates of the causal effect

v

» Increases power, particularly if imbalanced covariates
correlated with outcome



Covariate Balance in Randomized Experiments

» Option 1: force better balance on important covariates by
design —“Block what you can; randomize what you cannot”
(George Box)

» stratified randomized experiments
» paired randomized experiments
» rerandomization

» Option 2: correct imbalance in covariates by analysis
» outcome: gain scores
» separate analysis within subgroups
» covariate adjustment via regression or weighting



Randomized Experiments: Complications

v

Noncompliance

v

Loss to follow-up

v

Truncation due to “death", e.g. patients died before end of
study on life quality

v

Generalize to wider population

v

Ethical and practical constraints: clinical equipoise,
sequential trials, pragmatic trials



Observational Studies

» |In observational studies, we do not control or know the
treatment assignment mechanism

» Measured and unmeasured confounders: usually
unbalanced between groups

» Self-selection to treatment is prevalent

» Must make (often untestable) structural assumptions on
assignment mechanism to identify causal effects

» Strong Ignorability is not guaranteed but usually assumed
in the vast majority of observational studies



Example: Framingham Heart Study
(Thomas, Lorenzi, et al. 2018)

» Goal: evaluate the effect of statins on health outcomes

» Patients: cross-sectional population from the offspring
cohort with a visit 6 (1995-1998)

» Treatment: statin use at visit 6 vs. no statin use
» Outcomes: CV death, myocardial infarction (MI), stroke

» Confounders: sex, age, body mass index, diabetes,
history of MI, history of PAD, history of stroke...

» Significant imbalance between treatment and control
groups in covariates



Variable Names

Triglycerides-Spline2 -
Triglycerides-Splinet -
Triglycerides -

Systolic Blood Pressure-Spline2 -
Systolic Blood Pressure-Splinet -
Systolic Blood Pressure -
Smoker -

History of Stroke -

History of PAD -

History of MI-

HDL-Spline2 -

HDL-Splinet -

HDL -

Glucose-Spline2 -
Glucose-Spline1 -

Glucose -

Female -

Diastolic Blood Pressure-Spline2 -
Diastolic Blood Pressure-Spline1 -
Diastolic Blood Pressure -
Diabetes -

Cholesterol-Spline2 -
Cholesterol-Spline1 -

Cholesterol -

Blood Pressure Meds -
BMI-Spline2 -

BMI-Splinet -

BMI-

Age-Spline2 -

Age-Splinet -

Age-

ASCVD History -
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Regression Adjustment

» Need to adjust difference in the outcomes due to the
differences in covariates

» Most commonly via a regression model:

Y~a+bW+cX+dW- X

» Potential problems
» Regression itself does not take care of lack of overlap or
balance

» In regions where the groups do not have covariate overlap,
causal estimation is purely based on extrapolation

» Sensitivity to model-specification



Strategies to Reduce Model Sensitivity

» To mitigate model dependence, two strategies: (1) design -
balance covariates, (2) analysis- flexible models

» Best strategy is to use both jointly: first balance covariates
in the design stage, then use flexible models in the
analysis stage

» Balance covariates
» Stratification or matching
» Propensity score methods

» Flexible models
» Semiparametric models (e.g., power series)
» Machine learning methods (e.g., tree-based methods
(CART, random forest), boosting)
» Bayesian non- and semi parametric models (e.g., Gaussian
Processes, BART, Dirichlet Processes mixtures)



Balancing covariates: small number of covariates

» When the number of covariates is small, the adjustment
can be achieved by exact matching or stratification

» Exact matching: for each treated subject, get a control with
exact same value of the covariate

» Exact matching ensures distributions of covariates in
treatment and control groups are exactly the same, thus
eliminate bias due to difference in X

» Exact matching is usually infeasible, even with
low-dimensional covariates



Matching

» Regression estimators impute the missing potential
outcomes using the estimated regression function

» Matching estimators also impute the missing potential
outcomes, but do so using only the outcomes of nearest
neighbours of the opposite treatment group (similar to
nonparametric kernel regression methods)

» Matching is often (but not exclusively) been applied in
settings where there is a large reservoir of potential
controls



Matching: Dimensional Reduction

v

Matching is good, but...

v

What if there is a large number of covariates? With just 20
binary covariates, there are 220 or about a million covariate
patterns

v

Direct matching or stratification is nearly impossible

v

Need dimensional reduction: propensity score



Propensity score

Rosenbaum and Rubin, 1983, Biometrika

» The propensity score e(x): the probability of a unit
receiving a treatment given covariates
» Two key properties

1. The propensity score e(X) balances the distribution of all
observed covariates X between the treatment groups

2. If the treatment is unconfounded given X, then the
treatment is unconfounded given e(X)



Propensity score

» Propensity score is a scalar summary (summary statistic)
of the covariates w.r.t. the assignment mechanism

» Propensity score is central to ensure balance and overlap

» The propensity score balances the observed covariates,
but does not generally balance unobserved covariates

» In most observational studies, the propensity score e(X) is
unknown and thus needs to be estimated



Propensity score: analysis procedure

Propensity score analysis typically involves two stages:

Stage 1 Estimate the propensity score, by e.g. a logistic regression
or a machine learning method

Stage 2 Given the estimated propensity score, estimate the causal
effects through one of these methods:
» Stratification
Weighting
Matching
» Regression
Mixed procedure of the above

v

v

v



Propensity score analysis workflow

May go through

multiple cycles

without data snooping
Calculate the problem

propensity score

{

. Subclassification, Revise the
propensity matching, or propensity score
score weighting model
analysis

workflow Check
balance

Particularly useful for

multiple covariates
Compare outcomes — and/or outcomes
between the two groups




Propensity score matching

» Special case of matching: the distance metric is the
(estimated) propensity score

» 1-to-n nearest neighbor matching is common when the
control group is large compared to treatment group

» Pros: intuitive, robust, matched pairs, balance distributions
in directions uncorrelated to estimated PS

» Cons
» much tuning: with or without replacement, 1-to-1 or 1-to-n,
caliper, ties
» programming is hard
» difficult to extend to complex situations: sequential
treatments, multi-valued treatments



Propensity score weighting
Li, Morgan, Zaslavsky, 2018, JASA

» Another popular approach is (propensity score) weighting

» Main idea: re-weigh the treatment and control groups to
create a pseudo-population—the target population—where
the two groups are balanced, in expectation

» A general class of balancing weights

» Different weighting schemes: different target population
and causal estimands

» One should choose the target population a priori



Propensity score weighting: two schemes

» Inverse probability weights (IPW)

» Weigh each unit by the inverse of its probability of being
assigned to the current group

» Target population: the population that the study sample is
presentative of

» But what if the sample is a convenience sample?

» Overlap weights (Li, Morgan, Zaslavsky, 2018, JASA)

» Weigh each unit by its probability of being assigned to the
opposite group

» Target population: the population with the most overlap in
characteristics between groups (clinical equipoise)

» Overlap weights give exact balance of covariates



Framingham revisited: weighted distribution

Density
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Propensity Score
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Results: composite of non-death endpoints

Composite

Overlap-

IPW 1 -

Estimate

IPW 2-

IPW 3-

0.‘5
Hazard Ratio

Figure: IPW 1: No trimming; IPW 2: trimming ps between (.10, 0.90);
IPW 3: asymmetric trimming 5th% ps of trt, 95th% of ps for control



Sensitivity analysis

» Unconfoundedness is inherently untestable (unknown
unknowns)

» One should always perform sensitivity analysis to assess
how sensitive the causal analysis is to violation to
unconfoundedness

» Sensitivity is different from testing, more of a “insurance”
check

» Sensitivity analysis in causal inference dates back to the
Hill-Fisher debate on causation between smoking and lung
cancer, and first formalized in Cornfield (1959, JNCI)



Smoking and Lung Cancer: Revisited

Cornfield et al., 1959, JNCI

Common cause
hypothesis

U\
w Y
» Smoking W

» Lung cancer Y

» Genetic factor U

Fisher argued the association
between smoking and lung
cancer may be due to a
common gene that causes both

Cornfield showed: assuming
Fisher is right, the
smoking-gene association must
satisfy: RRyy > RRyy =~ 9
Such a genetic confounder is
too strong to be realistic

Thus, here association must be
due to causal



Sensitivity analysis

» Fundamental ideas

» Check what would happen to the same analysis had there
was an unmeasured confounder? (Rosenbaum and Rubin,
1983b)

» Or, how strong an unmeasured confounder has to be to
explain away the observed effects? (E-value) (Ding and
VanderWeele, 2014, 2016, 2016)

» Seldom done in substantive field, but should always be
checked



Quasi-Experiments

» Leverage the variation in treatment assignment resulted
from nature or policy

» Three main categories
» Instrumental variables (1V)

» Regression discontinuity designs (RDD)

» Difference-in-Differences (DiD)



Instrumental Variables

» An instrumental variable (1V): a variable that has a causal
effect on the treatment, but (is assumed to) have no
“direct” causal effect on the outcome

v

/
N

X

w Y




IV Example 1: Season of Birth

Angrist and Krueger, 1991, Quarterly Journal of Economics

» Goal: evaluate the effect of schooling on earnings

» Challenge: Relationship between year of schooling and
earnings is highly confounded by factors like family
social-economics status

» |V: quarter of the year of birth

» Main idea

» When one was born in the year is largely randomized, by
nature; it should not affect one’s later earnings directly

» It does directly affects when a child first attended school,
and in combination with the compulsory education
requirement, this can create up to one year of difference in
schooling



IV Example 2: Distance to Hospitals
McClellan, McNeil, Newhouse, 1994, JAMA

» Goal: evaluate the effect of intensive treatment of acute Ml
on mortality

» Challenge: Relationship between receiving intensive
treatment and mortality among AMI patients is highly
confounded by factors like case severity

» |V: distance to the closest hospital

» Main idea

» Where one lives is largely randomized; it should not directly
affect one’s survival following AMI

» It does directly affect what type of hospitals (high vs. low
volume and treatment availability) the patient first went, this
in turns affects which treatment the patient received



Two-stage Least Square (TSLS) Estimator
» Traditional model:
Yi = Bo+ B1Wi+ B2Xi + €.
where (34 is the causal effect
» Direct OLS estimate of 31 is biased
» With IV, we can fit a two-stage least square (2SLS)
regression to estimate gy:
M1 Y =mo+ m1Z + m2Xi + U
M2: W =m0+ m21Z + T2 X; + V;

» The 2SLS estimate of 3 is a ratio:

n2sls ~ ~
770 = 11 /e



Instrumental Variables: Assumptions

v

IVs, when available, are extremely useful tools to draw
causal inference

v

But, good IVs are hard to come by

v

A good IV must satisfy two conditions (assumptions)

1. Have a strong effect on the treatment, o.w. the estimate will
have large variance

2. Not have any direct effect on the outcome, o.w. has the
same endogenous problem as the treatment

v

Still one of the most popular causal inference methods



Regression discontinuity design (RDD)

» Regression discontinuity designs: the treatment status
changes discontinuously according to some underlying
pre-treatment variable — the running variable

» Basic idea: comparing units with similar values of the
running variable, but different levels of treatment would
lead to causal effect of the treatment at the threshold

» The discontinuity is often created by a pre-fixed, artificial
threshold of a policy

» Treatment among the subjects around the threshold can be
viewed as locally randomized



RDD Example: Financial Aid and Dropout

Li, Mattei, Mealli, 2015, AOAS

» Goal: evaluate the effect of financial aid on preventing
dropout in Italian colleges

» Challenge: students who received aids and who did not
are different in observed and unobserved ways

» Running variable: family wealth — eligibility to financial aid
depends solely on whether the family wealth is above or
below a fixed threshold

» Main idea
» Arguably students whose family wealth are just above and
just below the threshold are comparable in their background
» The artificial threshold set by the administration creates a
“local randomization" of treatment around the threshold



Sharp RDD

» The treatment status is a deterministic step function of a
running variable

1.0

0.8
I

0.4
Outcome variable (Y)

Assignment Probabilities
0.2
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Forcing variable (S) Forcing variable (S)

0.0
L

1
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1
1
1
1
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U
1
1
1
1
1
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» Focus on causal effects of the treatment at the threshold

» Ajumpin sy is interpreted as causal effect



Fuzzy RDD
» A value of the running variable falling above or below the
threshold acts as encouragement to take the treatment

0.4 0.6 0.8 1.0
| | )

Assignment Probabilities
0.2
|

0.0
L

So
Forcing variable (S)

» In fuzzy RDDs, the receipt of the treatment depends also
on individual choices, raising non-ignorability issues

» Fuzzy RDDs are related to IV: falling above or below the
threshold can be viewed as an instrument



RDD: assumption and limitationss

» Key assumption: continuity at the threshold or local
randomization

» Key to analysis: identify a small window around the
threshold where local randomization is reasonable

» Limitations
» Treatment effect local to the threshold, how generalizable?

» Manipulation of the running variable



Difference-in-Differences (DiD)

» A treatment-control comparison is not necessarily a causal
comparison because of the potential systematic
differences between two groups

» A unit is arguably the “best match” for itself

» A before-after comparison (of the same units) is not
necessarily a causal comparison because of the potential
change in time

» Difference-in-Differences (DiD) design combines both:
before-after treatment-control comparison

» Setup: two or more groups, with units observed in two or
more periods. In some periods and some groups are
exposed to the treatment



DiD Example: Minimum wages and Employment

Card and Krueger, 1994, American Economic Review

>

Goal: study the effect of increase in minimum wage on
employment

Units: fast-food restaurants in New Jersey and adjacent
eastern PA

Intervention: raise of the state minimum wage; NJ raised
the minimum on April 1, 1992, but PA not

Outcome: number of FTE per restaurant, observed in both
areas, and both right-before and after the change

Main idea:
» The restaurants near the state border are arguably similar
» Variation in treatment created by discontinuity in time
(policy change) and space (state border)



DiD: Parallel Trend Assumption
» Key assumption: Parallel trend — treatment and the control
group experience the same trends in the absence of

treatment

employment
rate

employment trend in .
treatment state employment trend in

control state
. /
~—

treatment
effect

treatment state

before after time



DiD: Limitations and Alternatives

v

Analysis is usually done via a fixed-effects regression
model (time-specific and unit-specific effects)

Limitations

v

» Parallel trend is untestable and may be implausible

» Scale-dependent: parallel trend for Y does not transfer to
log Y

» Serial correlation between observations

v

Alternatives: unconfoundedness conditional on past
outcomes and covariates

Uncounfoundedness is also untestable

v



Final words

v

Causal inference is hard, but fundamental and exciting

v

The potential outcome framework

v

Make and check assumptions

v

Design is the key

v

Many open questions
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