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Prefacio

Este libro presenta los métodos modernos de inferencia causal aplicados a estudios observacionales en salud y ciencias sociales. El contenido se basa en mis notas sobre el tema a lo largo de varios proyectos en los ultimos años y más recientemente en las notas de preparación del material para un curso dictado en la Universidad ICESI, Cali, Colombia.


¿Para quién es este libro?

Este material está diseñado para:


	Estudiantes de posgrado en epidemiología, bioestadística y salud pública

	Investigadores que trabajan con datos observacionales

	Profesionales interesados en métodos causales modernos





Prerrequisitos

Se asume conocimiento previo de:


	Estadística básica (probabilidad, distribuciones, pruebas de hipótesis)

	Regresión lineal y logística

	Fundamentos de epidemiología

	Programación básica en R





Estructura del libro

El libro está organizado en tres partes:


	Fundamentos: Diagramas causales (DAGs), confusión y sesgo de selección

	Métodos Avanzados: Variables instrumentales, supervivencia, sensibilidad y mediación

	Aplicación: Caso práctico integrando los métodos del curso





Software

Los ejemplos de código utilizan R con los siguientes paquetes principales:


# Paquetes principales
install.packages(c(
  "dagitty",     # DAGs
  "ggdag",       # Visualización de DAGs
  "MatchIt",     # Matching
  "WeightIt",    # Ponderación
  "survival",    # Análisis de supervivencia
  "mediation",   # Análisis de mediación
  "sensemakr",   # Análisis de sensibilidad
  "tidyverse"    # Manipulación de datos
))
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1 Introducción


1.1 ¿Qué es la inferencia causal?

La inferencia causal es el proceso de determinar si una relación entre variables es causal o meramente asociativa. En otras palabras, queremos saber si un cambio en una variable causa un cambio en otra.








Definición




La inferencia causal busca responder la pregunta: “¿Qué pasaría si…?” — una pregunta contrafactual que va más allá de la simple asociación estadística.









1.2 Correlación no implica causalidad

Este principio fundamental de la estadística nos recuerda que observar una asociación entre dos variables no significa que una cause la otra. Considera estos ejemplos:


	Helados y ahogamientos: Las ventas de helado están correlacionadas con las muertes por ahogamiento. ¿Los helados causan ahogamientos? No — ambos aumentan en verano.


	Cigüeñas y nacimientos: En algunas regiones europeas, el número de cigüeñas está correlacionado con la tasa de natalidad. ¿Las cigüeñas traen bebés? No — ambos están asociados con áreas rurales.






1.3 El problema fundamental de la inferencia causal

El problema fundamental de la inferencia causal es que no podemos observar el mismo individuo bajo dos condiciones diferentes al mismo tiempo. Si una persona recibe un tratamiento, no podemos saber qué hubiera pasado si no lo hubiera recibido.


flowchart LR
    A[Individuo] --> B{Tratamiento}
    B -->|Sí| C[Resultado observado]
    B -->|No| D[Resultado contrafactual]
    style D stroke-dasharray: 5 5
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Figura 1.1: El contrafactual nunca se observa










1.4 Soluciones al problema

A lo largo de la historia, se han desarrollado diferentes enfoques para abordar este problema:


1.4.1 Experimentos aleatorizados

El ensayo clínico aleatorizado (RCT) es el estándar de oro porque:


	La aleatorización crea grupos comparables

	Elimina el sesgo de confusión

	Permite estimar el efecto causal promedio



Sin embargo, los RCTs no siempre son: - Éticos (no podemos asignar exposiciones dañinas) - Factibles (alto costo, tiempo) - Generalizables (poblaciones seleccionadas)



1.4.2 Estudios observacionales

Los estudios observacionales son frecuentemente la única opción disponible. Para hacer inferencias causales válidas, necesitamos:


	Identificar las fuentes de sesgo

	Controlar la confusión

	Evaluar la sensibilidad de los resultados






1.5 El enfoque de este libro

Este libro adopta un enfoque basado en Diagramas Acíclicos Dirigidos (DAGs), desarrollado principalmente por Judea Pearl (Pearl 2009). Este enfoque nos permite:


	Representar visualmente nuestras asunciones causales

	Identificar sistemáticamente las fuentes de sesgo

	Determinar qué variables debemos (y no debemos) controlar





Código
library(ggdag)
library(ggplot2)

dag <- dagify(
  Y ~ X + C,
  X ~ C,
  exposure = "X",
  outcome = "Y",
  labels = c(
    Y = "Resultado",
    X = "Exposición",
    C = "Confusor"
  ),
  coords = list(
    x = c(X = 0, Y = 2, C = 1),
    y = c(X = 0, Y = 0, C = 1)
  )
)

ggdag(dag, text = FALSE, use_labels = "label") +
  theme_dag() +
  labs(title = "Confusión clásica")







[image: ]



Figura 1.2: Un DAG simple mostrando confusión










1.6 Objetivos de aprendizaje

Al finalizar este libro, serás capaz de:


	Construir e interpretar DAGs para problemas de investigación

	Identificar y controlar fuentes de sesgo en estudios observacionales

	Aplicar métodos de estratificación, matching y ponderación

	Reconocer y manejar el sesgo de selección

	Usar variables instrumentales cuando estén disponibles

	Realizar análisis de supervivencia con enfoque causal

	Evaluar la sensibilidad de tus resultados

	Conducir análisis de mediación causal





Referencias









2 DAGs y Confusión


2.1 Objetivos de aprendizaje

Al finalizar este capítulo, serás capaz de:


	Definir y construir Diagramas Acíclicos Dirigidos (DAGs)

	Distinguir entre causalidad y asociación

	Identificar confusores usando DAGs

	Aplicar las reglas de d-separación





2.2 ¿Qué es un DAG?

Un Diagrama Acíclico Dirigido (DAG, por sus siglas en inglés) es una representación gráfica de las relaciones causales entre variables.








Definición




Un DAG es un grafo donde:


	Dirigido: Las flechas indican la dirección de la causalidad

	Acíclico: No hay ciclos (no puedes volver a una variable siguiendo las flechas)










2.2.1 Componentes de un DAG



Código
library(ggdag)
library(ggplot2)

# DAG simple
dag <- dagify(
  Y ~ X + C,
  X ~ C,
  coords = list(
    x = c(X = 0, Y = 2, C = 1),
    y = c(X = 0, Y = 0, C = 1)
  )
)

ggdag(dag) +
  theme_dag() +
  labs(title = "DAG con exposición (X), resultado (Y) y confusor (C)")







[image: ]



Figura 2.1: Componentes básicos de un DAG











2.3 Causalidad vs Asociación


2.3.1 Asociación

Dos variables están asociadas si conocer el valor de una proporciona información sobre el valor de la otra.

[image: P(Y|X) \neq P(Y)]



2.3.2 Causalidad

Una variable causa otra si intervenir sobre la primera cambia la distribución de la segunda.

[image: P(Y|do(X)) \neq P(Y)]

La notación [image: do(X)] representa una intervención, no una observación.




2.4 Tipos de caminos en un DAG


2.4.1 Cadena (mediación)



Código
chain <- dagify(
  M ~ X,
  Y ~ M,
  coords = list(
    x = c(X = 0, M = 1, Y = 2),
    y = c(X = 0, M = 0, Y = 0)
  )
)

ggdag(chain) +
  theme_dag() +
  labs(title = "Cadena (Mediación)")







[image: ]



Figura 2.2: Cadena: X → M → Y








En una cadena, X causa Y a través de M. Si controlamos por M, bloqueamos el efecto.



2.4.2 Fork (confusión)



Código
fork <- dagify(
  X ~ C,
  Y ~ C,
  coords = list(
    x = c(X = 0, C = 1, Y = 2),
    y = c(X = 0, C = 1, Y = 0)
  )
)

ggdag(fork) +
  theme_dag() +
  labs(title = "Fork (Confusión)")







[image: ]



Figura 2.3: Fork: X ← C → Y








En un fork, C es causa común de X e Y. X e Y están asociadas pero X no causa Y.



2.4.3 Collider (colisionador)



Código
collider <- dagify(
  M ~ X + Y,
  coords = list(
    x = c(X = 0, M = 1, Y = 2),
    y = c(X = 0, M = -0.5, Y = 0)
  )
)

ggdag(collider) +
  theme_dag() +
  labs(title = "Collider")







[image: ]



Figura 2.4: Collider: X → M ← Y








En un collider, M es efecto de X e Y. X e Y no están asociadas, pero se vuelven asociadas si controlamos por M.




2.5 D-separación

La d-separación es un criterio para determinar si dos variables son independientes dado un conjunto de variables condicionantes.








Reglas de d-separación





	Cadenas y forks están bloqueados si condicionamos en el nodo intermedio

	Colliders están bloqueados por defecto, pero se abren si condicionamos en ellos (o sus descendientes)










2.5.1 Ejemplo



Código
example_dag <- dagify(
  Y ~ X + U,
  X ~ C,
  C ~ U,
  M ~ X + Y,
  exposure = "X",
  outcome = "Y",
  coords = list(
    x = c(X = 0, Y = 2, C = 0, U = 1, M = 1),
    y = c(X = 0, Y = 0, C = 1, U = 1, M = -1)
  )
)

ggdag_dseparated(example_dag, from = "X", to = "Y") +
  theme_dag() +
  labs(title = "¿X y Y son d-separadas?")







[image: ]



Figura 2.5: Ejemplo de d-separación











2.6 Identificación de confusores

Un confusor es una variable que:


	Causa (o está asociada con) la exposición

	Causa (o está asociada con) el resultado

	No está en el camino causal de X a Y





Código
library(dagitty)

g <- dagitty("dag {
  X -> Y
  C -> X
  C -> Y
}")

adjustmentSets(g, exposure = "X", outcome = "Y")




{ C }







2.7 Usando dagitty en R

El paquete dagitty permite:


	Definir DAGs

	Encontrar conjuntos de ajuste

	Verificar d-separación




library(dagitty)

# Definir DAG
mi_dag <- dagitty("dag {
  Tratamiento -> Resultado
  Edad -> Tratamiento
  Edad -> Resultado
  Sexo -> Resultado
}")

# Encontrar variables de ajuste
adjustmentSets(mi_dag, 
               exposure = "Tratamiento", 
               outcome = "Resultado")



{ Edad }







2.8 Aplicación: Ejemplo con datos

Consideremos un estudio sobre el efecto del ejercicio en la presión arterial:


# Simular datos
set.seed(42)
n <- 500

edad <- rnorm(n, 50, 10)
ejercicio <- 0.5 * edad + rnorm(n, 0, 5)  # Edad afecta ejercicio
presion <- 100 + 0.5 * edad - 0.3 * ejercicio + rnorm(n, 0, 10)

datos <- data.frame(edad, ejercicio, presion)

# Sin ajustar por edad (sesgado)
modelo_crudo <- lm(presion ~ ejercicio, data = datos)

# Ajustando por edad
modelo_ajustado <- lm(presion ~ ejercicio + edad, data = datos)

# Comparar
cat("Efecto crudo:", round(coef(modelo_crudo)[2], 3), "\n")



Efecto crudo: 0.208 



cat("Efecto ajustado:", round(coef(modelo_ajustado)[2], 3), "\n")



Efecto ajustado: -0.298 







2.9 Ejercicios








Ejercicio 1




Construye un DAG para el siguiente escenario: Queremos estudiar el efecto del consumo de café en enfermedades cardíacas. Sabemos que el tabaquismo está asociado tanto con el consumo de café como con las enfermedades cardíacas.














Ejercicio 2




Usando el paquete dagitty, determina el conjunto mínimo de variables que debes controlar para estimar el efecto causal.









2.10 Resumen


	Los DAGs son herramientas gráficas para representar asunciones causales

	Existen tres estructuras básicas: cadenas, forks y colliders

	La d-separación nos ayuda a identificar qué variables controlar

	Controlar por un collider introduce sesgo

	El paquete dagitty facilita el trabajo con DAGs en R





Referencias





3 Control de Confusión


3.1 Objetivos de aprendizaje

Al finalizar este capítulo, serás capaz de:


	Definir confusión y sus consecuencias

	Aplicar métodos de estratificación

	Implementar matching (emparejamiento)

	Utilizar ponderación por propensity score





3.2 ¿Qué es la confusión?

La confusión ocurre cuando una variable externa está asociada tanto con la exposición como con el resultado, distorsionando la estimación del efecto causal.








Consecuencia




Sin control adecuado de la confusión, podemos:


	Encontrar una asociación donde no existe efecto causal

	No detectar un efecto causal real

	Subestimar o sobreestimar la magnitud del efecto











3.3 Métodos para controlar confusión


3.3.1 1. Estratificación

La estratificación divide los datos en grupos homogéneos según el confusor.


# Simular datos
set.seed(123)
n <- 1000

# Confusor: edad (0 = joven, 1 = mayor)
edad <- rbinom(n, 1, 0.5)

# Exposición influenciada por edad
tratamiento <- rbinom(n, 1, 0.3 + 0.4 * edad)

# Resultado influenciado por ambos
resultado <- 50 + 10 * edad + 5 * tratamiento + rnorm(n, 0, 5)

datos <- data.frame(edad, tratamiento, resultado)

# Efecto crudo
cat("Efecto crudo:", 
    round(mean(resultado[tratamiento == 1]) - 
          mean(resultado[tratamiento == 0]), 2), "\n")



Efecto crudo: 9.01 



# Efecto estratificado
efecto_jovenes <- mean(resultado[tratamiento == 1 & edad == 0]) - 
                  mean(resultado[tratamiento == 0 & edad == 0])
efecto_mayores <- mean(resultado[tratamiento == 1 & edad == 1]) - 
                  mean(resultado[tratamiento == 0 & edad == 1])

cat("Efecto en jóvenes:", round(efecto_jovenes, 2), "\n")



Efecto en jóvenes: 4.7 



cat("Efecto en mayores:", round(efecto_mayores, 2), "\n")



Efecto en mayores: 5.17 







3.3.2 2. Matching (Emparejamiento)

El matching empareja individuos tratados y no tratados con características similares.


library(MatchIt)

# Datos más complejos
set.seed(456)
n <- 500

datos_match <- data.frame(
  edad = rnorm(n, 50, 10),
  imc = rnorm(n, 25, 5),
  sexo = rbinom(n, 1, 0.5)
)

# Probabilidad de tratamiento
prob_trat <- plogis(-2 + 0.05 * datos_match$edad + 
                    0.1 * datos_match$imc)
datos_match$tratamiento <- rbinom(n, 1, prob_trat)

# Resultado
datos_match$resultado <- 100 + 
  0.5 * datos_match$edad + 
  2 * datos_match$imc - 
  5 * datos_match$tratamiento + 
  rnorm(n, 0, 10)

# Matching
match_out <- matchit(tratamiento ~ edad + imc + sexo,
                     data = datos_match,
                     method = "nearest",
                     ratio = 1)

summary(match_out)




Call:
matchit(formula = tratamiento ~ edad + imc + sexo, data = datos_match, 
    method = "nearest", ratio = 1)

Summary of Balance for All Data:
         Means Treated Means Control Std. Mean Diff. Var. Ratio eCDF Mean
distance        0.9316        0.8815          0.9576     0.3455    0.2036
edad           51.4860       44.4794          0.7323     1.0378    0.1903
imc            25.1570       24.0066          0.2318     1.1417    0.0639
sexo            0.4871        0.4722          0.0297          .    0.0148
         eCDF Max
distance   0.3376
edad       0.3103
imc        0.1573
sexo       0.0148

Summary of Balance for Matched Data:
         Means Treated Means Control Std. Mean Diff. Var. Ratio eCDF Mean
distance        0.9887        0.8815          2.0500     0.0010    0.6529
edad           68.4310       44.4794          2.5033     0.2193    0.6264
imc            28.4034       24.0066          0.8859     0.9017    0.2409
sexo            0.5556        0.4722          0.1667          .    0.0833
         eCDF Max Std. Pair Dist.
distance   1.0000          2.0500
edad       0.9722          2.5033
imc        0.3889          1.3458
sexo       0.0833          0.8336

Sample Sizes:
          Control Treated
All            36     464
Matched        36      36
Unmatched       0     428
Discarded       0       0






3.3.2.1 Balance después del matching



Código
library(ggplot2)

plot(match_out, type = "jitter", interactive = FALSE)







[image: ]



Figura 3.1: Balance de covariables antes y después del matching










3.3.2.2 Estimación del efecto


# Obtener datos emparejados
datos_emparejados <- match.data(match_out)

# Efecto en datos emparejados
modelo_match <- lm(resultado ~ tratamiento, 
                   data = datos_emparejados,
                   weights = weights)

summary(modelo_match)$coefficients["tratamiento", ]



    Estimate   Std. Error      t value     Pr(>|t|) 
1.784918e+01 3.044303e+00 5.863141e+00 1.364022e-07 








3.3.3 3. Propensity Score

El propensity score es la probabilidad de recibir el tratamiento dado las covariables.

[image: e(X) = P(T = 1 | X)]


# Estimar propensity score
ps_model <- glm(tratamiento ~ edad + imc + sexo,
                data = datos_match,
                family = binomial)

datos_match$ps <- predict(ps_model, type = "response")

# Visualizar distribución
ggplot(datos_match, aes(x = ps, fill = factor(tratamiento))) +
  geom_density(alpha = 0.5) +
  labs(title = "Distribución del Propensity Score",
       x = "Propensity Score",
       fill = "Tratamiento") +
  theme_minimal()





[image: ]










3.3.4 4. Ponderación (IPTW)

La ponderación por el inverso del propensity score (IPTW) crea una pseudo-población donde tratamiento y covariables son independientes.

[image: w_i = \frac{T_i}{e(X_i)} + \frac{1 - T_i}{1 - e(X_i)}]


library(WeightIt)

# Calcular pesos
pesos <- weightit(tratamiento ~ edad + imc + sexo,
                  data = datos_match,
                  method = "ps",
                  estimand = "ATE")

summary(pesos)



                  Summary of weights

- Weight ranges:

          Min                                  Max
treated 1.004 ||                             1.498
control 2.467 |---------------------------| 53.778

- Units with the 5 most extreme weights by group:
                                          
            450    253    207    60     33
 treated  1.339  1.354  1.391 1.462  1.498
             27     24     21    14     13
 control 21.514 23.175 24.725 25.17 53.778

- Weight statistics:

        Coef of Var   MAD Entropy # Zeros
treated       0.063 0.045   0.002       0
control       0.715 0.492   0.208       0

- Effective Sample Sizes:

           Control Treated
Unweighted   36.    464.  
Weighted     24.04  462.18



# Modelo ponderado
modelo_iptw <- lm(resultado ~ tratamiento,
                  data = datos_match,
                  weights = pesos$weights)

summary(modelo_iptw)$coefficients["tratamiento", ]



   Estimate  Std. Error     t value    Pr(>|t|) 
-2.38609550  1.27698752 -1.86853471  0.06227447 








3.4 Comparación de métodos




	Método
	Ventajas
	Desventajas





	Estratificación
	Simple, transparente
	Solo para pocos confusores



	Matching
	Intuitivo, balance visible
	Pérdida de muestra



	PS Matching
	Reduce dimensionalidad
	Depende del modelo de PS



	IPTW
	Usa toda la muestra
	Pesos extremos posibles







3.5 Diagnósticos importantes


3.5.1 Balance de covariables



Código
library(cobalt)

love.plot(pesos, 
          thresholds = c(m = 0.1),
          abs = TRUE,
          var.order = "unadjusted")
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Figura 3.2: Love plot: comparación de balance










3.5.2 Distribución de pesos


summary(pesos$weights)



   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
  1.004   1.033   1.063   1.955   1.119  53.778 



# Pesos extremos pueden indicar violación de positividad
cat("Pesos > 10:", sum(pesos$weights > 10), "\n")



Pesos > 10: 19 








3.6 Ejercicios








Ejercicio 1




Usando el dataset simulado, compara los resultados de:


	Análisis crudo

	Matching por edad e IMC

	IPTW



¿Cuál se acerca más al efecto verdadero (-5)?














Ejercicio 2




Evalúa el impacto de diferentes métodos de matching (nearest, optimal, genetic) en el balance y la estimación del efecto.









3.7 Resumen


	La confusión distorsiona las estimaciones de efectos causales

	La estratificación es útil para pocos confusores

	El matching empareja individuos similares

	El propensity score resume múltiples confusores en un solo número

	IPTW permite usar toda la muestra

	Siempre verificar el balance después del ajuste





Referencias





4 Sesgo de Selección


4.1 Objetivos de aprendizaje

Al finalizar este capítulo, serás capaz de:


	Definir sesgo de selección desde una perspectiva causal

	Identificar el sesgo de colisionador

	Reconocer diferentes tipos de sesgo de selección

	Proponer estrategias para mitigar estos sesgos





4.2 ¿Qué es el sesgo de selección?

El sesgo de selección ocurre cuando la asociación entre exposición y resultado difiere entre los participantes del estudio y la población objetivo.








Perspectiva causal




Desde el marco de DAGs, el sesgo de selección surge cuando condicionamos en un collider o en descendientes de un collider.









4.3 El sesgo de colisionador

Un colisionador es una variable que es efecto común de dos o más variables.



Código
library(ggdag)
library(ggplot2)

collider_dag <- dagify(
  S ~ X + Y,
  coords = list(
    x = c(X = 0, Y = 2, S = 1),
    y = c(X = 0, Y = 0, S = -0.5)
  ),
  labels = c(
    X = "Exposición",
    Y = "Resultado",
    S = "Selección"
  )
)

ggdag_adjust(collider_dag, var = "S", 
             text = FALSE, use_labels = "label") +
  theme_dag() +
  labs(title = "Condicionar en el colisionador induce sesgo")







[image: ]



Figura 4.1: Sesgo de colisionador: condicionar en S abre el camino X → S ← Y









4.3.1 Ejemplo: La paradoja del índice de colisión


set.seed(789)
n <- 10000

# Habilidad académica y habilidad deportiva (independientes)
academico <- rnorm(n, 0, 1)
deportivo <- rnorm(n, 0, 1)

# Admisión basada en ambas (collider)
admitido <- (academico + deportivo) > 1

# En la población general
cor(academico, deportivo)



[1] -0.01700133



# Entre los admitidos solamente
cor(academico[admitido], deportivo[admitido])



[1] -0.6322336












Interpretación




Aunque las habilidades son independientes en la población, entre los admitidos aparece una correlación negativa. Esto es porque si una persona con alta habilidad académica fue admitida, no necesita alta habilidad deportiva (y viceversa).










4.4 Tipos de sesgo de selección


4.4.1 1. Sesgo de participación

Ocurre cuando la participación en el estudio depende de la exposición y el resultado.



Código
part_dag <- dagify(
  Y ~ X,
  S ~ X + Y,
  coords = list(
    x = c(X = 0, Y = 2, S = 1),
    y = c(X = 0, Y = 0, S = -1)
  )
)

ggdag(part_dag) +
  theme_dag() +
  annotate("text", x = 1, y = -1.5, 
           label = "Solo observamos S = 1", 
           size = 3, color = "red")







[image: ]



Figura 4.2: Sesgo de participación










4.4.2 2. Sesgo de pérdida de seguimiento

En estudios longitudinales, la pérdida de seguimiento puede estar relacionada con exposición y resultado.


# Simulación de pérdida de seguimiento
set.seed(101)
n <- 2000

datos_fup <- data.frame(
  tratamiento = rbinom(n, 1, 0.5)
)

# El resultado verdadero
datos_fup$resultado_verdadero <- 50 - 10 * datos_fup$tratamiento + 
                                  rnorm(n, 0, 15)

# Pérdida de seguimiento más probable en no tratados con mal resultado
prob_perdida <- plogis(-2 + 1.5 * (1 - datos_fup$tratamiento) - 
                       0.05 * datos_fup$resultado_verdadero)
datos_fup$perdido <- rbinom(n, 1, prob_perdida)

# Resultado observado
datos_fup$resultado_observado <- ifelse(datos_fup$perdido == 1, 
                                        NA, 
                                        datos_fup$resultado_verdadero)

# Efecto verdadero
efecto_verdadero <- mean(datos_fup$resultado_verdadero[datos_fup$tratamiento == 1]) -
                    mean(datos_fup$resultado_verdadero[datos_fup$tratamiento == 0])

# Efecto observado (sesgado)
observados <- datos_fup[!is.na(datos_fup$resultado_observado), ]
efecto_observado <- mean(observados$resultado_observado[observados$tratamiento == 1]) -
                    mean(observados$resultado_observado[observados$tratamiento == 0])

cat("Efecto verdadero:", round(efecto_verdadero, 2), "\n")



Efecto verdadero: -8.99 



cat("Efecto observado:", round(efecto_observado, 2), "\n")



Efecto observado: -9.43 



cat("Sesgo:", round(efecto_observado - efecto_verdadero, 2), "\n")



Sesgo: -0.45 







4.4.3 3. Sesgo del sobreviviente

Estudiamos solo a quienes “sobrevivieron” a un proceso de selección.



Código
surv_dag <- dagify(
  Muerte ~ Exposicion + Factor,
  Resultado ~ Exposicion,
  coords = list(
    x = c(Exposicion = 0, Muerte = 1, Resultado = 2, Factor = 1),
    y = c(Exposicion = 0, Muerte = -0.5, Resultado = 0, Factor = 0.5)
  )
)

ggdag(surv_dag) +
  theme_dag() +
  labs(title = "Sesgo del sobreviviente: solo observamos si Muerte = 0")
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Figura 4.3: Sesgo del sobreviviente










4.4.4 4. Sesgo de Berkson

Selección basada en hospitalización u otra condición común.


# Ejemplo: Enfermedades A y B causan hospitalización
set.seed(202)
n_poblacion <- 50000

poblacion <- data.frame(
  enfermedad_A = rbinom(n_poblacion, 1, 0.1),  # 10% prevalencia
  enfermedad_B = rbinom(n_poblacion, 1, 0.05)  # 5% prevalencia
)

# Hospitalización si tiene alguna enfermedad
poblacion$hospitalizado <- as.numeric(
  poblacion$enfermedad_A == 1 | poblacion$enfermedad_B == 1
)

# En la población
cat("Correlación en población:", 
    round(cor(poblacion$enfermedad_A, poblacion$enfermedad_B), 4), "\n")



Correlación en población: 0.0045 



# Entre hospitalizados
hospitalizados <- poblacion[poblacion$hospitalizado == 1, ]
cat("Correlación entre hospitalizados:", 
    round(cor(hospitalizados$enfermedad_A, hospitalizados$enfermedad_B), 4), "\n")



Correlación entre hospitalizados: -0.9204 








4.5 Estrategias de mitigación


4.5.1 1. Ponderación por probabilidad de selección

Si conocemos los factores de selección, podemos usar ponderación por inverso de la probabilidad de selección (IPWS).


# Usando los datos de pérdida de seguimiento
datos_fup$prob_no_perdida <- 1 - prob_perdida
datos_fup$peso <- 1 / datos_fup$prob_no_perdida

# Análisis ponderado (solo en observados)
observados$peso <- datos_fup$peso[!is.na(datos_fup$resultado_observado)]

efecto_ponderado <- weighted.mean(
  observados$resultado_observado[observados$tratamiento == 1],
  observados$peso[observados$tratamiento == 1]) -
  weighted.mean(
  observados$resultado_observado[observados$tratamiento == 0],
  observados$peso[observados$tratamiento == 0])

cat("Efecto verdadero:", round(efecto_verdadero, 2), "\n")



Efecto verdadero: -8.99 



cat("Efecto ponderado:", round(efecto_ponderado, 2), "\n")



Efecto ponderado: -9 







4.5.2 2. Análisis de sensibilidad

Evaluar cómo diferentes asunciones sobre la selección afectan los resultados.



4.5.3 3. Diseño del estudio


	Minimizar pérdida de seguimiento

	Recopilar información sobre los que no participan

	Usar muestreo representativo






4.6 Identificación usando DAGs



Código
library(dagitty)

full_dag <- dagitty("dag {
  X -> Y
  U -> X
  U -> Y
  X -> S
  Y -> S
}")

ggdag(full_dag) +
  theme_dag() +
  labs(title = "X: Exposición, Y: Resultado, S: Selección, U: Confusor")
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Figura 4.4: DAG completo con mecanismo de selección









# Verificar si el efecto es identificable
# dado que condicionamos en S
full_dag <- dagitty("dag {
  X -> Y
  U -> X
  U -> Y
  X -> S
  Y -> S
}")

# ¿Qué debemos ajustar si estamos condicionando en S?
cat("Conjuntos de ajuste cuando S está condicionado:\n")



Conjuntos de ajuste cuando S está condicionado:



print(adjustmentSets(full_dag, exposure = "X", outcome = "Y", 
                     type = "all"))



{ U }







4.7 Ejercicios








Ejercicio 1




Un estudio hospitalario encuentra que los pacientes con diabetes tienen menor riesgo de enfermedad pulmonar. Dibuja un DAG y explica por qué esto podría ser sesgo de Berkson.














Ejercicio 2




En un ensayo clínico, 30% de los pacientes en el grupo placebo abandonan vs. 10% en el grupo tratamiento. Simula este escenario y cuantifica el sesgo resultante.









4.8 Resumen


	El sesgo de selección distorsiona la asociación entre exposición y resultado

	Desde la perspectiva de DAGs, surge al condicionar en un collider

	Incluye: sesgo de participación, pérdida de seguimiento, sobreviviente y Berkson

	La ponderación por probabilidad de selección puede corregir el sesgo

	El diseño cuidadoso del estudio es la mejor prevención





Referencias









5 Variables Instrumentales


5.1 Objetivos de aprendizaje

Al finalizar este capítulo, serás capaz de:


	Definir una variable instrumental

	Verificar las condiciones de validez de un instrumento

	Aplicar estimación por mínimos cuadrados en dos etapas (2SLS)

	Interpretar efectos locales (LATE)





5.2 ¿Qué es una variable instrumental?

Una variable instrumental (IV) es una variable que afecta la exposición pero no tiene efecto directo sobre el resultado, excepto a través de la exposición.



Código
library(ggdag)
library(ggplot2)

iv_dag <- dagify(
  Y ~ X + U,
  X ~ Z + U,
  coords = list(
    x = c(Z = 0, X = 1, Y = 2, U = 1.5),
    y = c(Z = 0, X = 0, Y = 0, U = 1)
  ),
  labels = c(
    Z = "Instrumento",
    X = "Exposición",
    Y = "Resultado",
    U = "Confusor\n(no observado)"
  )
)

ggdag(iv_dag, text = FALSE, use_labels = "label") +
  theme_dag() +
  labs(title = "Variable Instrumental")
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Figura 5.1: DAG de variable instrumental










5.3 Condiciones de validez








Las tres condiciones





	Relevancia: Z está asociada con X

	Independencia: Z es independiente de confusores no observados (U)

	Exclusión: Z no afecta Y excepto a través de X










5.3.1 Verificación de relevancia

La condición de relevancia es la única verificable empíricamente.


# Simulación
set.seed(42)
n <- 5000

# Confusor no observado
U <- rnorm(n)

# Instrumento (ej: distancia a hospital)
Z <- rnorm(n)

# Exposición influenciada por Z y U
X <- 0.5 * Z + 0.8 * U + rnorm(n, 0, 0.5)

# Resultado influenciado por X y U
Y <- 2 * X + 1.5 * U + rnorm(n, 0, 1)

datos_iv <- data.frame(Z, X, Y, U)

# Primera etapa: Z -> X
primera_etapa <- lm(X ~ Z, data = datos_iv)
summary(primera_etapa)




Call:
lm(formula = X ~ Z, data = datos_iv)

Residuals:
    Min      1Q  Median      3Q     Max 
-3.1449 -0.6224  0.0190  0.6381  3.5124 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) -0.01585    0.01331  -1.191    0.234    
Z            0.50925    0.01321  38.549   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.941 on 4998 degrees of freedom
Multiple R-squared:  0.2292,    Adjusted R-squared:  0.229 
F-statistic:  1486 on 1 and 4998 DF,  p-value: < 2.2e-16



# Regla de oro: F > 10
cat("\nF-statistic:", 
    round(summary(primera_etapa)$fstatistic[1], 1), "\n")




F-statistic: 1486 








5.4 Estimación por 2SLS

El método de Mínimos Cuadrados en Dos Etapas (2SLS):


	Primera etapa: Predecir X usando Z

	Segunda etapa: Usar X predicho para estimar el efecto sobre Y




# Método manual (para entender)

# Etapa 1: Predecir X
etapa1 <- lm(X ~ Z, data = datos_iv)
datos_iv$X_pred <- predict(etapa1)

# Etapa 2: Usar X predicho
etapa2 <- lm(Y ~ X_pred, data = datos_iv)

cat("Efecto estimado por 2SLS:", 
    round(coef(etapa2)["X_pred"], 3), "\n")



Efecto estimado por 2SLS: 1.994 



cat("Efecto verdadero: 2\n")



Efecto verdadero: 2






5.4.1 Usando el paquete ivreg


library(ivreg)

# Estimación correcta con errores estándar apropiados
modelo_iv <- ivreg(Y ~ X | Z, data = datos_iv)
summary(modelo_iv)




Call:
ivreg(formula = Y ~ X | Z, data = datos_iv)

Residuals:
      Min        1Q    Median        3Q       Max 
-5.885405 -1.216900 -0.002617  1.223677  8.117727 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) -0.01126    0.02559   -0.44     0.66    
X            1.99359    0.04985   39.99   <2e-16 ***

Diagnostic tests:
                  df1  df2 statistic p-value    
Weak instruments    1 4998      1486  <2e-16 ***
Wu-Hausman          1 4997      1148  <2e-16 ***
Sargan              0   NA        NA      NA    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.808 on 4998 degrees of freedom
Multiple R-Squared: 0.7412, Adjusted R-squared: 0.7411 
Wald test:  1599 on 1 and 4998 DF,  p-value: < 2.2e-16 








5.5 Comparación con OLS


# OLS (sesgado por confusión)
modelo_ols <- lm(Y ~ X, data = datos_iv)

cat("Efecto OLS (sesgado):", round(coef(modelo_ols)["X"], 3), "\n")



Efecto OLS (sesgado): 3.042 



cat("Efecto IV:", round(coef(modelo_iv)["X"], 3), "\n")



Efecto IV: 1.994 



cat("Efecto verdadero: 2\n")



Efecto verdadero: 2







5.6 Efecto Local (LATE)

El estimador IV identifica el Efecto Promedio del Tratamiento Local (LATE): el efecto entre los “compliers” (quienes cumplen con la asignación del instrumento).



Código
tipos <- data.frame(
  Tipo = c("Compliers", "Always-takers", "Never-takers", "Defiers"),
  Z0_X = c("X=0", "X=1", "X=0", "X=1"),
  Z1_X = c("X=1", "X=1", "X=0", "X=0"),
  Descripcion = c(
    "Tratados solo si Z=1",
    "Siempre tratados",
    "Nunca tratados",
    "Tratados solo si Z=0"
  )
)

knitr::kable(tipos, 
             col.names = c("Tipo", "Si Z=0", "Si Z=1", "Descripción"),
             caption = "Tipos de individuos según respuesta al instrumento")







Tipos de individuos según respuesta al instrumento


	Tipo
	Si Z=0
	Si Z=1
	Descripción





	Compliers
	X=0
	X=1
	Tratados solo si Z=1



	Always-takers
	X=1
	X=1
	Siempre tratados



	Never-takers
	X=0
	X=0
	Nunca tratados



	Defiers
	X=1
	X=0
	Tratados solo si Z=0








Figura 5.2: Tipos de individuos según respuesta al instrumento













Supuesto de monotonía




Generalmente asumimos que no hay “defiers” (monotonía). Esto significa que el instrumento solo puede aumentar (o no cambiar) la probabilidad de tratamiento, nunca disminuirla.









5.7 Ejemplos clásicos de instrumentos









	Contexto
	Exposición
	Instrumento





	Retornos a educación
	Años de educación
	Trimestre de nacimiento



	Efecto de cesárea
	Tipo de parto
	Preferencia del médico



	Efecto de transfusión
	Volumen transfundido
	Distancia al banco de sangre



	Randomización con incumplimiento
	Tratamiento recibido
	Asignación aleatoria







5.8 Instrumentos débiles

Un instrumento débil tiene baja correlación con la exposición.


# Instrumento débil
set.seed(123)
Z_debil <- rnorm(n)
X_debil <- 0.05 * Z_debil + 0.8 * U + rnorm(n, 0, 0.5)  # Coeficiente pequeño
Y_debil <- 2 * X_debil + 1.5 * U + rnorm(n, 0, 1)

# Primera etapa
etapa1_debil <- lm(X_debil ~ Z_debil)
cat("F-statistic (instrumento débil):", 
    round(summary(etapa1_debil)$fstatistic[1], 1), "\n")



F-statistic (instrumento débil): 6.7 



# IV con instrumento débil
datos_debil <- data.frame(Z = Z_debil, X = X_debil, Y = Y_debil)
modelo_iv_debil <- ivreg(Y ~ X | Z, data = datos_debil)

cat("Efecto IV (instrumento débil):", 
    round(coef(modelo_iv_debil)["X"], 3), "\n")



Efecto IV (instrumento débil): 1.459 



cat("Error estándar:", 
    round(summary(modelo_iv_debil)$coefficients["X", "Std. Error"], 3), "\n")



Error estándar: 0.906 







5.9 Diagnósticos para IV


5.9.1 Test de instrumentos débiles


# Test de Cragg-Donald / Kleibergen-Paap
summary(modelo_iv, diagnostics = TRUE)




Call:
ivreg(formula = Y ~ X | Z, data = datos_iv)

Residuals:
      Min        1Q    Median        3Q       Max 
-5.885405 -1.216900 -0.002617  1.223677  8.117727 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) -0.01126    0.02559   -0.44     0.66    
X            1.99359    0.04985   39.99   <2e-16 ***

Diagnostic tests:
                  df1  df2 statistic p-value    
Weak instruments    1 4998      1486  <2e-16 ***
Wu-Hausman          1 4997      1148  <2e-16 ***
Sargan              0   NA        NA      NA    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.808 on 4998 degrees of freedom
Multiple R-Squared: 0.7412, Adjusted R-squared: 0.7411 
Wald test:  1599 on 1 and 4998 DF,  p-value: < 2.2e-16 







5.9.2 Test de sobreidentificación

Cuando tienes más de un instrumento, puedes probar la validez del conjunto.


# Múltiples instrumentos
Z2 <- Z + rnorm(n, 0, 0.5)  # Segundo instrumento
datos_iv$Z2 <- Z2

modelo_iv_multi <- ivreg(Y ~ X | Z + Z2, data = datos_iv)
summary(modelo_iv_multi, diagnostics = TRUE)




Call:
ivreg(formula = Y ~ X | Z + Z2, data = datos_iv)

Residuals:
      Min        1Q    Median        3Q       Max 
-5.885158 -1.216807 -0.002639  1.223392  8.117374 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) -0.01126    0.02559   -0.44     0.66    
X            1.99370    0.04984   40.00   <2e-16 ***

Diagnostic tests:
                  df1  df2 statistic p-value    
Weak instruments    2 4997   743.291  <2e-16 ***
Wu-Hausman          1 4997  1148.871  <2e-16 ***
Sargan              1   NA     0.012   0.913    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.808 on 4998 degrees of freedom
Multiple R-Squared: 0.7412, Adjusted R-squared: 0.7412 
Wald test:  1600 on 1 and 4998 DF,  p-value: < 2.2e-16 








5.10 Ejercicios








Ejercicio 1




Un economista quiere estimar el efecto de los años de educación sobre el salario. Propone usar la distancia al colegio más cercano como instrumento.


	Dibuja el DAG

	Discute la plausibilidad de las tres condiciones

	¿Qué población representaría el LATE?
















Ejercicio 2




Simula un escenario donde el instrumento viola la restricción de exclusión (Z afecta Y directamente). ¿Qué sucede con la estimación IV?









5.11 Resumen


	Las variables instrumentales permiten identificar efectos causales con confusores no observados

	Requieren tres condiciones: relevancia, independencia y exclusión

	Solo la relevancia es verificable empíricamente

	El método 2SLS es el más común para estimación

	El efecto identificado es el LATE (efecto entre compliers)

	Los instrumentos débiles producen estimaciones sesgadas e imprecisas





Referencias





6 Causalidad y Supervivencia


6.1 Objetivos de aprendizaje

Al finalizar este capítulo, serás capaz de:


	Integrar conceptos causales con análisis de supervivencia

	Reconocer los sesgos específicos de datos de tiempo al evento

	Aplicar métodos de ponderación para estimación causal

	Manejar riesgos competitivos desde una perspectiva causal





6.2 Análisis de supervivencia: repaso

El análisis de supervivencia estudia el tiempo hasta que ocurre un evento de interés.


6.2.1 Conceptos fundamentales


library(survival)
library(ggplot2)

# Datos de ejemplo
data(lung)

# Modelo de Kaplan-Meier
km_fit <- survfit(Surv(time, status) ~ sex, data = lung)

# Visualización
plot(km_fit, col = c("blue", "red"), 
     xlab = "Tiempo (días)", 
     ylab = "Probabilidad de supervivencia",
     main = "Curvas de Kaplan-Meier por sexo")
legend("topright", c("Hombre", "Mujer"), col = c("blue", "red"), lty = 1)





[image: ]











6.3 Sesgos en supervivencia


6.3.1 Sesgo de tiempo inmortal

El sesgo de tiempo inmortal ocurre cuando hay un período durante el cual los sujetos expuestos no pueden experimentar el evento.



Código
library(ggdag)

it_dag <- dagify(
  Y ~ X + T,
  X ~ T,
  coords = list(
    x = c(T = 0, X = 1, Y = 2),
    y = c(T = 0, X = 0.3, Y = 0)
  ),
  labels = c(
    T = "Tiempo\n(sobrevivir\nhasta exposición)",
    X = "Exposición",
    Y = "Muerte"
  )
)

ggdag(it_dag, text = FALSE, use_labels = "label") +
  theme_dag() +
  labs(title = "El tiempo de supervivencia necesario para exponerse crea sesgo")







[image: ]



Figura 6.1: Sesgo de tiempo inmortal










6.3.2 Ejemplo de sesgo de tiempo inmortal


# Simulación
set.seed(303)
n <- 1000

# Tiempo hasta exposición (si ocurre)
tiempo_exposicion <- rexp(n, 0.1)

# Tiempo de supervivencia verdadero (independiente de exposición)
tiempo_muerte_base <- rexp(n, 0.05)

# Asignación de exposición (solo si sobrevive hasta entonces)
datos_it <- data.frame(
  id = 1:n,
  tiempo_exposicion = tiempo_exposicion,
  tiempo_muerte_base = tiempo_muerte_base
)

# ¿Se expuso? (solo si sobrevivió hasta el momento de exposición)
datos_it$expuesto <- datos_it$tiempo_muerte_base > datos_it$tiempo_exposicion

# Tiempo observado
datos_it$tiempo_observado <- pmin(datos_it$tiempo_muerte_base, 100)
datos_it$evento <- datos_it$tiempo_muerte_base <= 100

# Análisis INCORRECTO (ignora tiempo inmortal)
modelo_incorrecto <- coxph(Surv(tiempo_observado, evento) ~ expuesto,
                           data = datos_it)

cat("HR (análisis incorrecto, sesgo de tiempo inmortal):",
    round(exp(coef(modelo_incorrecto)), 3), "\n")



HR (análisis incorrecto, sesgo de tiempo inmortal): 0.18 



cat("HR verdadero: 1.0 (la exposición no tiene efecto)\n")



HR verdadero: 1.0 (la exposición no tiene efecto)







6.3.3 Corrección con tiempo dependiente


library(survival)

# Crear datos en formato largo (tiempo-dependiente)
datos_tv <- survSplit(Surv(tiempo_observado, evento) ~ .,
                      data = datos_it,
                      cut = datos_it$tiempo_exposicion[datos_it$expuesto],
                      episode = "periodo")

# Exposición como variable tiempo-dependiente
datos_tv$expuesto_tv <- with(datos_tv, 
                             expuesto & tstart >= tiempo_exposicion)

# Análisis CORRECTO
modelo_correcto <- coxph(Surv(tstart, tiempo_observado, evento) ~ expuesto_tv,
                         data = datos_tv)

cat("HR (análisis correcto):", 
    round(exp(coef(modelo_correcto)), 3), "\n")



HR (análisis correcto): 0.889 








6.4 Ponderación en supervivencia (IPTW)

Podemos combinar propensity scores con análisis de supervivencia.


library(WeightIt)

# Datos con confusión
set.seed(404)
n <- 1500

datos_surv <- data.frame(
  edad = rnorm(n, 60, 10),
  comorbilidad = rbinom(n, 1, 0.3)
)

# Tratamiento influenciado por confusores
prob_trat <- plogis(-3 + 0.05 * datos_surv$edad + 1 * datos_surv$comorbilidad)
datos_surv$tratamiento <- rbinom(n, 1, prob_trat)

# Tiempo de supervivencia
hazard <- 0.01 * exp(0.03 * datos_surv$edad + 
                     0.5 * datos_surv$comorbilidad - 
                     0.4 * datos_surv$tratamiento)  # Efecto protector
datos_surv$tiempo <- rexp(n, hazard)
datos_surv$tiempo <- pmin(datos_surv$tiempo, 100)
datos_surv$evento <- datos_surv$tiempo < 100

# Calcular pesos
pesos_surv <- weightit(tratamiento ~ edad + comorbilidad,
                       data = datos_surv,
                       method = "ps",
                       estimand = "ATE")

# Modelo sin ponderación (sesgado)
modelo_crudo <- coxph(Surv(tiempo, evento) ~ tratamiento,
                      data = datos_surv)

# Modelo ponderado
modelo_ponderado <- coxph(Surv(tiempo, evento) ~ tratamiento,
                          data = datos_surv,
                          weights = pesos_surv$weights,
                          robust = TRUE)

cat("HR crudo:", round(exp(coef(modelo_crudo)), 3), "\n")



HR crudo: 0.863 



cat("HR ponderado:", round(exp(coef(modelo_ponderado)), 3), "\n")



HR ponderado: 0.701 



cat("HR verdadero: exp(-0.4) =", round(exp(-0.4), 3), "\n")



HR verdadero: exp(-0.4) = 0.67 







6.5 Riesgos competitivos

Los riesgos competitivos ocurren cuando múltiples tipos de eventos pueden terminar el seguimiento.



Código
cr_dag <- dagify(
  D1 ~ X + C,
  D2 ~ X + C,
  coords = list(
    x = c(X = 0, C = 1, D1 = 2, D2 = 2),
    y = c(X = 0, C = 1, D1 = 0.5, D2 = -0.5)
  ),
  labels = c(
    X = "Exposición",
    C = "Confusor",
    D1 = "Muerte por\ncáncer",
    D2 = "Muerte por\notra causa"
  )
)

ggdag(cr_dag, text = FALSE, use_labels = "label") +
  theme_dag() +
  labs(title = "Riesgos competitivos")
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Figura 6.2: Estructura de riesgos competitivos









6.5.1 Enfoque de subdistribución (Fine-Gray)


library(cmprsk)

# Simular riesgos competitivos
set.seed(505)
n <- 800

datos_cr <- data.frame(
  tratamiento = rbinom(n, 1, 0.5)
)

# Dos tipos de eventos
tiempo_cancer <- rexp(n, 0.03 - 0.01 * datos_cr$tratamiento)
tiempo_otro <- rexp(n, 0.02)

# Evento observado
datos_cr$tiempo <- pmin(tiempo_cancer, tiempo_otro, 50)
datos_cr$tipo_evento <- ifelse(datos_cr$tiempo >= 50, 0,
                               ifelse(tiempo_cancer < tiempo_otro, 1, 2))

# Modelo Fine-Gray para muerte por cáncer
fg_fit <- crr(datos_cr$tiempo, 
              datos_cr$tipo_evento,
              datos_cr[, "tratamiento", drop = FALSE],
              failcode = 1)

summary(fg_fit)



Competing Risks Regression

Call:
crr(ftime = datos_cr$tiempo, fstatus = datos_cr$tipo_evento, 
    cov1 = datos_cr[, "tratamiento", drop = FALSE], failcode = 1)

              coef exp(coef) se(coef)     z p-value
tratamiento -0.381     0.683    0.105 -3.63 0.00028

            exp(coef) exp(-coef)  2.5% 97.5%
tratamiento     0.683       1.46 0.556 0.839

Num. cases = 800
Pseudo Log-likelihood = -2340 
Pseudo likelihood ratio test = 13.2  on 1 df,







6.5.2 Interpretación causal








Cuidado con la interpretación




El modelo de Fine-Gray estima el efecto sobre la incidencia acumulada, no sobre el riesgo causa-específico. Esto tiene implicaciones para la interpretación causal porque incluye implícitamente los efectos sobre el riesgo competitivo.










6.6 Análisis causa-específico


# Análisis causa-específico (censurar el otro evento)
datos_cs <- datos_cr
datos_cs$evento_cancer <- as.numeric(datos_cs$tipo_evento == 1)

modelo_cs <- coxph(Surv(tiempo, evento_cancer) ~ tratamiento,
                   data = datos_cs)

cat("HR causa-específico (muerte por cáncer):", 
    round(exp(coef(modelo_cs)), 3), "\n")



HR causa-específico (muerte por cáncer): 0.731 







6.7 Ejercicios








Ejercicio 1




Un estudio encuentra que los pacientes que reciben un trasplante de riñón tienen mejor supervivencia que los que permanecen en diálisis. Sin embargo, los pacientes deben sobrevivir en lista de espera para recibir el trasplante.


	Identifica el sesgo de tiempo inmortal

	Propón un diseño analítico correcto
















Ejercicio 2




En un estudio de cáncer, algunos pacientes mueren por causas cardiovasculares antes de morir por cáncer.


	¿Cómo afecta esto la estimación del efecto del tratamiento?

	Compara las estimaciones Fine-Gray vs causa-específica











6.8 Resumen


	El análisis de supervivencia requiere consideraciones causales especiales

	El sesgo de tiempo inmortal surge cuando la exposición requiere sobrevivir

	La solución es usar exposición como variable tiempo-dependiente

	IPTW se puede aplicar a modelos de supervivencia

	Los riesgos competitivos requieren elegir entre estimandos alternativos

	Fine-Gray vs causa-específico tienen diferentes interpretaciones causales





Referencias





7 Análisis de Sensibilidad


7.1 Objetivos de aprendizaje

Al finalizar este capítulo, serás capaz de:


	Entender la importancia del análisis de sensibilidad

	Calcular e interpretar el E-value

	Aplicar métodos de sensibilidad cuantitativos

	Comunicar la robustez de hallazgos causales





7.2 ¿Por qué análisis de sensibilidad?

En estudios observacionales, nunca podemos estar seguros de haber controlado todos los confusores. El análisis de sensibilidad evalúa qué tan fuertes tendrían que ser los confusores no medidos para explicar nuestros resultados.



Código
library(ggdag)
library(ggplot2)

sens_dag <- dagify(
  Y ~ X + C + U,
  X ~ C + U,
  coords = list(
    x = c(X = 0, Y = 2, C = 1, U = 1),
    y = c(X = 0, Y = 0, C = 0.7, U = -0.7)
  ),
  labels = c(
    X = "Exposición",
    Y = "Resultado",
    C = "Confusor\n(medido)",
    U = "Confusor\n(no medido)"
  )
)

ggdag(sens_dag, text = FALSE, use_labels = "label") +
  theme_dag() +
  labs(title = "U podría explicar la asociación observada")
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Figura 7.1: El confusor no medido (U) amenaza la validez










7.3 El E-value

El E-value (VanderWeele y Ding 2017) es la asociación mínima que un confusor no medido tendría que tener con tanto la exposición como el resultado para explicar completamente la asociación observada.

[image: E\text{-value} = RR + \sqrt{RR \times (RR - 1)}]


library(EValue)

# Ejemplo: RR observado = 2.5
rr_observado <- 2.5
ic_inferior <- 1.8  # Límite inferior del IC 95%

# Calcular E-value
evalues <- evalues.RR(est = rr_observado, lo = ic_inferior)
evalues



            point lower upper
RR       2.500000   1.8    NA
E-values 4.436492   3.0    NA






7.3.1 Interpretación del E-value



Código
# Crear datos para el gráfico
rr_seq <- seq(1.1, 5, 0.1)
evalue_seq <- rr_seq + sqrt(rr_seq * (rr_seq - 1))

plot_data <- data.frame(
  RR = rr_seq,
  EValue = evalue_seq
)

# Valores del ejemplo anterior
rr_ejemplo <- 2.5
evalue_ejemplo <- 2.5 + sqrt(2.5 * (2.5 - 1))

ggplot(plot_data, aes(x = RR, y = EValue)) +
  geom_line(size = 1.2, color = "steelblue") +
  geom_vline(xintercept = rr_ejemplo, linetype = "dashed", color = "red") +
  geom_hline(yintercept = evalue_ejemplo, linetype = "dashed", color = "red") +
  annotate("point", x = rr_ejemplo, y = evalue_ejemplo, size = 4, color = "red") +
  labs(x = "Riesgo Relativo observado",
       y = "E-value",
       title = "E-value en función del RR observado") +
  theme_minimal()
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Figura 7.2: Interpretación gráfica del E-value















Interpretación




Para un RR de 2.5, el E-value es aproximadamente 4.4. Esto significa que un confusor no medido tendría que tener un RR de al menos 4.4 con tanto la exposición como el resultado para explicar completamente la asociación observada.










7.4 Análisis de sensibilidad con sensemakr

El paquete sensemakr (Cinelli y Hazlett 2020) proporciona herramientas más sofisticadas.


library(sensemakr)

# Ejemplo con datos de discriminación laboral
data("darfur")

# Modelo ajustado
modelo <- lm(peacefactor ~ directlyharmed + age + farmer_dar + 
             herder_dar + pastvoted + female, data = darfur)

# Análisis de sensibilidad
sens <- sensemakr(model = modelo,
                  treatment = "directlyharmed",
                  benchmark_covariates = "female",
                  kd = 1:3,
                  q = 1)

summary(sens)



Sensitivity Analysis to Unobserved Confounding

Model Formula: peacefactor ~ directlyharmed + age + farmer_dar + herder_dar + 
    pastvoted + female

Null hypothesis: q = 1 and reduce = TRUE 
-- This means we are considering biases that reduce the absolute value of the current estimate.
-- The null hypothesis deemed problematic is H0:tau = 0 

Unadjusted Estimates of 'directlyharmed': 
  Coef. estimate: 0.0489 
  Standard Error: 0.0184 
  t-value (H0:tau = 0): 2.6648 

Sensitivity Statistics:
  Partial R2 of treatment with outcome: 0.0056 
  Robustness Value, q = 1: 0.0721 
  Robustness Value, q = 1, alpha = 0.05: 0.0195 

Verbal interpretation of sensitivity statistics:

-- Partial R2 of the treatment with the outcome: an extreme confounder (orthogonal to the covariates) that explains 100% of the residual variance of the outcome, would need to explain at least 0.56% of the residual variance of the treatment to fully account for the observed estimated effect.

-- Robustness Value, q = 1: unobserved confounders (orthogonal to the covariates) that explain more than 7.21% of the residual variance of both the treatment and the outcome are strong enough to bring the point estimate to 0 (a bias of 100% of the original estimate). Conversely, unobserved confounders that do not explain more than 7.21% of the residual variance of both the treatment and the outcome are not strong enough to bring the point estimate to 0.

-- Robustness Value, q = 1, alpha = 0.05: unobserved confounders (orthogonal to the covariates) that explain more than 1.95% of the residual variance of both the treatment and the outcome are strong enough to bring the estimate to a range where it is no longer 'statistically different' from 0 (a bias of 100% of the original estimate), at the significance level of alpha = 0.05. Conversely, unobserved confounders that do not explain more than 1.95% of the residual variance of both the treatment and the outcome are not strong enough to bring the estimate to a range where it is no longer 'statistically different' from 0, at the significance level of alpha = 0.05.

Bounds on omitted variable bias:

--The table below shows the maximum strength of unobserved confounders with association with the treatment and the outcome bounded by a multiple of the observed explanatory power of the chosen benchmark covariate(s).

 Bound Label R2dz.x R2yz.dx      Treatment Adjusted Estimate Adjusted Se
   1x female 0.0027  0.1314 directlyharmed            0.0366      0.0171
   2x female 0.0054  0.2627 directlyharmed            0.0243      0.0158
   3x female 0.0081  0.3941 directlyharmed            0.0119      0.0144
 Adjusted T Adjusted Lower CI Adjusted Upper CI
     2.1357            0.0030            0.0703
     1.5341           -0.0068            0.0553
     0.8273           -0.0163            0.0401






7.4.1 Visualización de contornos



Código
plot(sens)







[image: ]



Figura 7.3: Contornos de sensibilidad










7.4.2 Robustness Value (RV)


# El Robustness Value indica qué tan fuerte tendría que ser
# un confusor para reducir el efecto a cero

cat("Robustness Value (q=1):", 
    round(sens$bounds$r2yz.dx[1], 3), "\n")



Robustness Value (q=1): 0.131 



cat("\nInterpretación: Un confusor tendría que explicar al menos",
    round(sens$bounds$r2yz.dx[1] * 100, 1), "% de la varianza\n",
    "residual tanto de X como de Y para eliminar el efecto.\n")




Interpretación: Un confusor tendría que explicar al menos 13.1 % de la varianza
 residual tanto de X como de Y para eliminar el efecto.








7.5 Fórmula de sesgo de confusión

La fórmula de sesgo permite calcular cuánto cambiaría la estimación dado un confusor específico:

[image: \text{Sesgo} = \frac{(\text{RR}_{UY} - 1) \times (\text{RR}_{UX} - 1)}{\text{RR}_{UY} + (\text{RR}_{UX} - 1) \times P(U)}]


# Función para calcular sesgo
calcular_sesgo <- function(rr_uy, rr_ux, p_u = 0.5) {
  # Fórmula simplificada
  bias <- (rr_uy - 1) * (rr_ux - 1) / 
          (rr_uy + (rr_ux - 1) * p_u)
  return(bias)
}

# Ejemplo: ¿Cuánto sesgo introduciría un confusor con RR=1.5 
# con exposición y resultado?
sesgo <- calcular_sesgo(rr_uy = 1.5, rr_ux = 1.5)
cat("Sesgo aproximado:", round(sesgo, 3), "\n")



Sesgo aproximado: 0.143 







7.6 Análisis de sensibilidad para IPTW


# Simulación con confusor no medido
set.seed(606)
n <- 2000

# Confusor medido
C_medido <- rnorm(n)

# Confusor NO medido
U <- rnorm(n)

# Exposición
prob_X <- plogis(-1 + 0.5 * C_medido + 0.8 * U)
X <- rbinom(n, 1, prob_X)

# Resultado
Y <- 2 + 3 * X + 1.5 * C_medido + 2 * U + rnorm(n)

datos_sens <- data.frame(C_medido, U, X, Y)

# Efecto verdadero (controlando U)
efecto_verdadero <- coef(lm(Y ~ X + C_medido + U, data = datos_sens))["X"]

# Efecto sin U (sesgado)
efecto_sesgado <- coef(lm(Y ~ X + C_medido, data = datos_sens))["X"]

# IPTW sin U
library(WeightIt)
pesos <- weightit(X ~ C_medido, data = datos_sens, method = "ps")
efecto_iptw <- coef(lm(Y ~ X, data = datos_sens, weights = pesos$weights))["X"]

cat("Efecto verdadero (con U):", round(efecto_verdadero, 3), "\n")



Efecto verdadero (con U): 2.958 



cat("Efecto sin U (OLS):", round(efecto_sesgado, 3), "\n")



Efecto sin U (OLS): 4.468 



cat("Efecto IPTW (sin U):", round(efecto_iptw, 3), "\n")



Efecto IPTW (sin U): 4.432 



cat("Sesgo por U:", round(efecto_iptw - efecto_verdadero, 3), "\n")



Sesgo por U: 1.473 







7.7 Comunicando resultados de sensibilidad


7.7.1 Buenas prácticas


	Reportar E-values para el efecto y su intervalo de confianza

	Comparar con confusores conocidos: ¿Es plausible un confusor tan fuerte?

	Usar benchmarks: Comparar con la fuerza de confusores medidos

	Ser transparente sobre las limitaciones





7.7.2 Ejemplo de reporte


# Supongamos un RR observado
rr_obs <- 1.8
rr_lo <- 1.3
rr_hi <- 2.4

# E-values
ev <- evalues.RR(est = rr_obs, lo = rr_lo, hi = rr_hi)

cat("REPORTE DE SENSIBILIDAD\n")



REPORTE DE SENSIBILIDAD



cat("=======================\n\n")



=======================



cat("RR observado: ", rr_obs, " (IC 95%: ", rr_lo, "-", rr_hi, ")\n\n", sep = "")



RR observado: 1.8 (IC 95%: 1.3-2.4)



cat("E-value para el estimado puntual:", round(ev["E-values", "point"], 2), "\n")



E-value para el estimado puntual: 3 



cat("E-value para el límite inferior del IC:", round(ev["E-values", "lower"], 2), "\n\n")



E-value para el límite inferior del IC: 1.92 



cat("Interpretación: Para explicar completamente la asociación observada,\n")



Interpretación: Para explicar completamente la asociación observada,



cat("un confusor no medido tendría que estar asociado con tanto la\n")



un confusor no medido tendría que estar asociado con tanto la



cat("exposición como el resultado con un RR de al menos", 
    round(ev["E-values", "point"], 2), ".\n\n")



exposición como el resultado con un RR de al menos 3 .



cat("Para mover el IC inferior a 1.0, la asociación del confusor\n")



Para mover el IC inferior a 1.0, la asociación del confusor



cat("tendría que ser de al menos RR =", round(ev["E-values", "lower"], 2), ".\n")



tendría que ser de al menos RR = 1.92 .








7.8 Ejercicios








Ejercicio 1




Un estudio observacional encuentra que el consumo de vegetales está asociado con menor mortalidad (HR = 0.75, IC 95%: 0.65-0.85).


	Calcula el E-value

	¿Qué tan fuerte tendría que ser un confusor para explicar esto?

	Considera confusores plausibles (nivel socioeconómico, acceso a salud)
















Ejercicio 2




Usando sensemakr, realiza un análisis de sensibilidad completo para un modelo de tu elección. Interpreta los resultados y determina si el efecto es robusto.









7.9 Resumen


	El análisis de sensibilidad evalúa la robustez de hallazgos causales

	El E-value cuantifica la fuerza mínima de un confusor para explicar el efecto

	sensemakr proporciona visualizaciones y métricas avanzadas

	Siempre comparar con la fuerza de confusores conocidos

	Reportar transparentemente las limitaciones del estudio





Referencias





8 Análisis de Mediación


8.1 Objetivos de aprendizaje

Al finalizar este capítulo, serás capaz de:


	Distinguir entre efectos directos e indirectos

	Definir efectos de mediación causal (NDE, NIE)

	Identificar las asunciones para mediación

	Aplicar el paquete mediation en R





8.2 ¿Qué es la mediación?

La mediación examina cómo o por qué una exposición afecta un resultado. El efecto puede ser:


	Directo: X → Y

	Indirecto: X → M → Y (a través de un mediador)





Código
library(ggdag)
library(ggplot2)

med_dag <- dagify(
  M ~ X,
  Y ~ X + M,
  coords = list(
    x = c(X = 0, M = 1, Y = 2),
    y = c(X = 0, M = 0.5, Y = 0)
  ),
  labels = c(
    X = "Exposición",
    M = "Mediador",
    Y = "Resultado"
  )
)

ggdag(med_dag, text = FALSE, use_labels = "label") +
  theme_dag() +
  labs(title = "X afecta Y directamente y a través de M")







[image: ]



Figura 8.1: Diagrama de mediación simple










8.3 Definiciones causales


8.3.1 Efectos naturales (NDE y NIE)


	Efecto Directo Natural (NDE): Efecto de X sobre Y manteniendo M en el nivel que habría tenido sin la exposición

	Efecto Indirecto Natural (NIE): Efecto de cambiar M desde el nivel sin exposición al nivel con exposición, manteniendo X fijo



[image: \text{Efecto Total} = \text{NDE} + \text{NIE}]



Código
library(ggplot2)

# Datos para visualización
efectos <- data.frame(
  Tipo = c("Directo (NDE)", "Indirecto (NIE)"),
  Valor = c(0.6, 0.4),
  ymin = 0,
  ymax = c(0.6, 1.0)
)

ggplot(efectos, aes(x = 1, y = Valor, fill = Tipo)) +
  geom_col(position = "stack", width = 0.5) +
  coord_flip() +
  labs(y = "Proporción del efecto total",
       x = "",
       title = "Descomposición del efecto total") +
  theme_minimal() +
  theme(axis.text.y = element_blank(),
        axis.ticks.y = element_blank())







[image: ]



Figura 8.2: Descomposición del efecto total











8.4 Asunciones para identificación








Cuatro asunciones de no confusión





	No hay confusión de X → Y

	No hay confusión de M → Y

	No hay confusión de X → M

	No hay confusor de M → Y afectado por X



La cuarta asunción es frecuentemente violada y difícil de verificar.









Código
full_med_dag <- dagify(
  M ~ X + C1,
  Y ~ X + M + C2,
  X ~ C1 + C2,
  coords = list(
    x = c(X = 0, M = 1, Y = 2, C1 = 0.5, C2 = 1),
    y = c(X = 0, M = 0.5, Y = 0, C1 = 1, C2 = -0.8)
  ),
  labels = c(
    X = "Exposición",
    M = "Mediador",
    Y = "Resultado",
    C1 = "Confusor\nX-M",
    C2 = "Confusor\nX-Y y M-Y"
  )
)

ggdag(full_med_dag, text = FALSE, use_labels = "label") +
  theme_dag()







[image: ]



Figura 8.3: Escenario con todas las asunciones satisfechas










8.5 Método de Baron-Kenny (tradicional)

El enfoque clásico usa tres regresiones:


# Simular datos
set.seed(707)
n <- 1000

X <- rnorm(n)  # Exposición
M <- 0.5 * X + rnorm(n, 0, 0.5)  # Mediador
Y <- 0.3 * X + 0.6 * M + rnorm(n, 0, 0.5)  # Resultado

datos_med <- data.frame(X, M, Y)

# Paso 1: Efecto total (X -> Y)
modelo1 <- lm(Y ~ X, data = datos_med)
cat("Efecto total:", round(coef(modelo1)["X"], 3), "\n")



Efecto total: 0.603 



# Paso 2: Efecto de X sobre M
modelo2 <- lm(M ~ X, data = datos_med)
cat("Efecto X -> M:", round(coef(modelo2)["X"], 3), "\n")



Efecto X -> M: 0.504 



# Paso 3: Efecto de X y M sobre Y
modelo3 <- lm(Y ~ X + M, data = datos_med)
cat("Efecto directo (X -> Y|M):", round(coef(modelo3)["X"], 3), "\n")



Efecto directo (X -> Y|M): 0.306 



cat("Efecto M -> Y:", round(coef(modelo3)["M"], 3), "\n")



Efecto M -> Y: 0.59 



# Efecto indirecto (producto de coeficientes)
efecto_indirecto <- coef(modelo2)["X"] * coef(modelo3)["M"]
cat("\nEfecto indirecto (a × b):", round(efecto_indirecto, 3), "\n")




Efecto indirecto (a × b): 0.297 






8.5.1 Limitaciones del método tradicional


	No tiene interpretación causal clara

	Asume linearidad

	No funciona bien con mediadores o resultados binarios

	Intervalos de confianza problemáticos






8.6 Método de mediación causal

El paquete mediation implementa el enfoque de efectos naturales:


library(mediation)

# Modelo para el mediador
modelo_mediador <- lm(M ~ X, data = datos_med)

# Modelo para el resultado
modelo_resultado <- lm(Y ~ X + M, data = datos_med)

# Análisis de mediación
med_out <- mediate(modelo_mediador, modelo_resultado,
                   treat = "X",
                   mediator = "M",
                   boot = TRUE,
                   sims = 500)

summary(med_out)




Causal Mediation Analysis 

Nonparametric Bootstrap Confidence Intervals with the Percentile Method

               Estimate 95% CI Lower 95% CI Upper   p-value    
ACME            0.29717      0.26265      0.33218 < 2.2e-16 ***
ADE             0.30631      0.26522      0.35520 < 2.2e-16 ***
Total Effect    0.60348      0.56832      0.64330 < 2.2e-16 ***
Prop. Mediated  0.49243      0.42951      0.54926 < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Sample Size Used: 1000 


Simulations: 500 






8.6.1 Interpretación de resultados


cat("=== INTERPRETACIÓN ===\n\n")



=== INTERPRETACIÓN ===



cat("ACME (Average Causal Mediation Effect):", 
    round(med_out$d0, 3), "\n")



ACME (Average Causal Mediation Effect): 0.297 



cat("  → Efecto que pasa a través del mediador\n\n")



  → Efecto que pasa a través del mediador



cat("ADE (Average Direct Effect):", 
    round(med_out$z0, 3), "\n")



ADE (Average Direct Effect): 0.306 



cat("  → Efecto que NO pasa por el mediador\n\n")



  → Efecto que NO pasa por el mediador



cat("Proporción mediada:", 
    round(med_out$n0, 2), "\n")



Proporción mediada: 0.49 



cat("  → ", round(med_out$n0 * 100), "% del efecto total es mediado\n", sep = "")



  → 49% del efecto total es mediado








8.7 Mediación con resultados binarios


# Datos con resultado binario
set.seed(808)
n <- 2000

X <- rbinom(n, 1, 0.5)  # Exposición binaria
M <- plogis(-1 + 1.5 * X) + rnorm(n, 0, 0.2)  # Mediador continuo
M <- pmax(0, pmin(1, M))  # Limitar entre 0 y 1
Y <- rbinom(n, 1, plogis(-1.5 + 0.5 * X + 2 * M))  # Resultado binario

datos_bin <- data.frame(X, M, Y)

# Modelos
mod_med_bin <- lm(M ~ X, data = datos_bin)
mod_out_bin <- glm(Y ~ X + M, data = datos_bin, family = binomial)

# Mediación
med_bin <- mediate(mod_med_bin, mod_out_bin,
                   treat = "X",
                   mediator = "M",
                   boot = TRUE,
                   sims = 200)

summary(med_bin)




Causal Mediation Analysis 

Nonparametric Bootstrap Confidence Intervals with the Percentile Method

                         Estimate 95% CI Lower 95% CI Upper   p-value    
ACME (control)           0.155226     0.116670     0.195889 < 2.2e-16 ***
ACME (treated)           0.165200     0.128907     0.204012 < 2.2e-16 ***
ADE (control)            0.082277     0.029158     0.136139 < 2.2e-16 ***
ADE (treated)            0.092251     0.034054     0.149166 < 2.2e-16 ***
Total Effect             0.247478     0.208113     0.294190 < 2.2e-16 ***
Prop. Mediated (control) 0.627234     0.439330     0.840683 < 2.2e-16 ***
Prop. Mediated (treated) 0.667537     0.493558     0.865155 < 2.2e-16 ***
ACME (average)           0.160213     0.123372     0.200685 < 2.2e-16 ***
ADE (average)            0.087264     0.031540     0.142628 < 2.2e-16 ***
Prop. Mediated (average) 0.647385     0.462488     0.852919 < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Sample Size Used: 2000 


Simulations: 200 







8.8 Análisis de sensibilidad para mediación

La violación de las asunciones (especialmente la 4ª) puede sesgar las estimaciones. El paquete mediation incluye análisis de sensibilidad:


# Análisis de sensibilidad
sens_med <- medsens(med_out, rho.by = 0.1, sims = 200)
summary(sens_med)




Mediation Sensitivity Analysis for Average Causal Mediation Effect

Sensitivity Region

     Rho    ACME 95% CI Lower 95% CI Upper R^2_M*R^2_Y* R^2_M~R^2_Y~
[1,] 0.5 -0.0041      -0.0365       0.0283         0.25       0.0446

Rho at which ACME = 0: 0.5
R^2_M*R^2_Y* at which ACME = 0: 0.25
R^2_M~R^2_Y~ at which ACME = 0: 0.0446 







Código
plot(sens_med, main = "Sensibilidad del ACME")
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Figura 8.4: Sensibilidad del efecto indirecto










8.9 Múltiples mediadores

Cuando hay varios mediadores, el análisis se complica:



Código
multi_med_dag <- dagify(
  M1 ~ X,
  M2 ~ X,
  Y ~ X + M1 + M2,
  coords = list(
    x = c(X = 0, M1 = 1, M2 = 1, Y = 2),
    y = c(X = 0, M1 = 0.5, M2 = -0.5, Y = 0)
  )
)

ggdag(multi_med_dag) +
  theme_dag() +
  labs(title = "X → Y con dos mediadores M1 y M2")
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Figura 8.5: Múltiples mediadores















Complicación




Con múltiples mediadores que pueden afectarse entre sí, los efectos indirectos específicos para cada mediador generalmente no están identificados sin asunciones adicionales.









8.10 Ejercicios








Ejercicio 1




Un programa educativo (X) mejora las calificaciones (Y). Se hipotetiza que el efecto es mediado por horas de estudio (M).


	Simula datos bajo este escenario

	Estima NDE y NIE

	Calcula la proporción mediada

	Realiza análisis de sensibilidad
















Ejercicio 2




Considera el caso donde el mediador M tiene un confusor U que también está afectado por X (violación de la 4ª asunción). Simula este escenario y muestra cómo sesga las estimaciones.









8.11 Resumen


	La mediación descompone el efecto total en directo e indirecto

	NDE y NIE tienen interpretación causal clara

	Se requieren cuatro asunciones de no confusión

	La 4ª asunción (no confusor M→Y afectado por X) es crítica

	El paquete mediation implementa estos métodos

	Siempre realizar análisis de sensibilidad
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9 Aplicación Integradora


9.1 Objetivos de aprendizaje

Al finalizar este capítulo, serás capaz de:


	Integrar todos los métodos del curso en un análisis completo

	Seguir un flujo de trabajo reproducible para inferencia causal

	Tomar decisiones metodológicas fundamentadas

	Comunicar resultados con transparencia





9.2 Caso de estudio: Efecto del ejercicio en la salud cardiovascular


9.2.1 Pregunta de investigación


¿Cuál es el efecto causal del ejercicio regular en el riesgo de eventos cardiovasculares en adultos mayores?





9.2.2 Datos

Utilizaremos datos simulados que imitan un estudio de cohorte observacional.


set.seed(2026)
n <- 3000

# Generar datos
datos <- data.frame(
  id = 1:n,
  edad = round(rnorm(n, 65, 8)),
  sexo = rbinom(n, 1, 0.48),  # 1 = mujer
  imc = round(rnorm(n, 27, 4), 1),
  diabetes = rbinom(n, 1, 0.2),
  hipertension = rbinom(n, 1, 0.4),
  educacion = sample(1:4, n, replace = TRUE, 
                     prob = c(0.2, 0.3, 0.35, 0.15)),
  ingreso = round(rlnorm(n, log(50000), 0.5))
)

# Exposición: ejercicio regular (confundido)
datos$prob_ejercicio <- plogis(
  -2 + 
  -0.02 * datos$edad +
  0.3 * datos$sexo +
  -0.05 * datos$imc +
  -0.5 * datos$diabetes +
  0.3 * datos$educacion +
  0.0001 * datos$ingreso
)
datos$ejercicio <- rbinom(n, 1, datos$prob_ejercicio)

# Mediador potencial: presión arterial
datos$presion <- round(
  120 + 
  0.3 * datos$edad +
  -3 * datos$sexo +
  0.5 * datos$imc +
  15 * datos$hipertension +
  -8 * datos$ejercicio +  # Efecto del ejercicio
  rnorm(n, 0, 10)
)

# Resultado: evento cardiovascular (0/1)
datos$hazard <- exp(
  -5 +
  0.04 * datos$edad +
  -0.3 * datos$sexo +
  0.02 * datos$imc +
  0.4 * datos$diabetes +
  0.5 * datos$hipertension +
  0.02 * datos$presion +
  -0.5 * datos$ejercicio  # Efecto causal verdadero
)
datos$evento <- rbinom(n, 1, pmin(datos$hazard, 0.8))

# Limpiar
datos$prob_ejercicio <- NULL
datos$hazard <- NULL







9.3 Paso 1: Especificación del DAG



Código
library(ggdag)
library(ggplot2)

app_dag <- dagify(
  Ejercicio ~ Edad + Sexo + IMC + Diabetes + Educacion + Ingreso,
  Presion ~ Edad + Sexo + IMC + Hipertension + Ejercicio,
  Evento ~ Edad + Sexo + IMC + Diabetes + Hipertension + Presion + Ejercicio,
  exposure = "Ejercicio",
  outcome = "Evento",
  labels = c(
    Ejercicio = "Ejercicio",
    Evento = "Evento CV",
    Presion = "Presión",
    Edad = "Edad",
    Sexo = "Sexo",
    IMC = "IMC",
    Diabetes = "Diabetes",
    Hipertension = "HTA",
    Educacion = "Educación",
    Ingreso = "Ingreso"
  )
)

ggdag_status(app_dag, text = FALSE, use_labels = "label") +
  theme_dag() +
  labs(title = "DAG: Efecto del ejercicio en eventos cardiovasculares")
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Figura 9.1: DAG del estudio









9.3.1 Identificación de confusores


library(dagitty)

g <- dagitty("dag {
  Ejercicio -> Evento
  Ejercicio -> Presion -> Evento
  Edad -> Ejercicio
  Edad -> Presion
  Edad -> Evento
  Sexo -> Ejercicio
  Sexo -> Presion
  Sexo -> Evento
  IMC -> Ejercicio
  IMC -> Presion
  IMC -> Evento
  Diabetes -> Ejercicio
  Diabetes -> Evento
  Hipertension -> Presion
  Hipertension -> Evento
  Educacion -> Ejercicio
  Ingreso -> Ejercicio
}")

# Conjunto de ajuste mínimo
cat("Conjunto mínimo de ajuste:\n")



Conjunto mínimo de ajuste:



print(adjustmentSets(g, exposure = "Ejercicio", outcome = "Evento", type = "minimal"))



{ Diabetes, Edad, IMC, Sexo }








9.4 Paso 2: Análisis descriptivo


library(tableone)

vars <- c("edad", "sexo", "imc", "diabetes", "hipertension", 
          "educacion", "ingreso", "presion", "evento")

tabla1 <- CreateTableOne(vars = vars, 
                         strata = "ejercicio",
                         data = datos,
                         factorVars = c("sexo", "diabetes", "hipertension"))

print(tabla1, smd = TRUE)



                       Stratified by ejercicio
                        0                   1                   p      test
  n                          966                2034                       
  edad (mean (SD))         65.35 (7.94)        64.71 (7.86)      0.036     
  sexo = 1 (%)               434 (44.9)         1015 (49.9)      0.012     
  imc (mean (SD))          27.25 (4.24)        26.95 (3.99)      0.058     
  diabetes = 1 (%)           224 (23.2)          394 (19.4)      0.018     
  hipertension = 1 (%)       393 (40.7)          825 (40.6)      0.981     
  educacion (mean (SD))     2.35 (0.95)         2.51 (0.99)     <0.001     
  ingreso (mean (SD))   35583.83 (12728.30) 66758.71 (30260.72) <0.001     
  presion (mean (SD))     158.15 (13.03)      149.92 (13.20)    <0.001     
  evento (mean (SD))        0.80 (0.40)         0.79 (0.41)      0.464     
                       Stratified by ejercicio
                        SMD   
  n                           
  edad (mean (SD))       0.082
  sexo = 1 (%)           0.100
  imc (mean (SD))        0.073
  diabetes = 1 (%)       0.093
  hipertension = 1 (%)   0.002
  educacion (mean (SD))  0.167
  ingreso (mean (SD))    1.343
  presion (mean (SD))    0.627
  evento (mean (SD))     0.029












Desequilibrio observado




Las diferencias estandarizadas (SMD) mayores a 0.1 indican desequilibrio entre grupos. Esto confirma la necesidad de ajuste.









9.5 Paso 3: Estimación por múltiples métodos


9.5.1 3.1 Análisis crudo


# Riesgo relativo crudo
tabla_cruda <- table(datos$ejercicio, datos$evento)
rr_crudo <- (tabla_cruda[2,2] / sum(tabla_cruda[2,])) / 
            (tabla_cruda[1,2] / sum(tabla_cruda[1,]))

cat("RR crudo:", round(rr_crudo, 3), "\n")



RR crudo: 0.985 



# Regresión logística cruda
modelo_crudo <- glm(evento ~ ejercicio, data = datos, family = binomial)
cat("OR crudo:", round(exp(coef(modelo_crudo)["ejercicio"]), 3), "\n")



OR crudo: 0.931 







9.5.2 3.2 Regresión multivariable


# Sin incluir la presión (mediador)
modelo_ajustado <- glm(evento ~ ejercicio + edad + sexo + imc + 
                       diabetes + hipertension,
                       data = datos, family = binomial)

cat("OR ajustado:", round(exp(coef(modelo_ajustado)["ejercicio"]), 3), "\n")



OR ajustado: 0.943 



cat("IC 95%:", round(exp(confint(modelo_ajustado)["ejercicio",]), 3), "\n")



IC 95%: 0.778 1.141 







9.5.3 3.3 Propensity Score Matching


library(MatchIt)

# Matching
match_out <- matchit(ejercicio ~ edad + sexo + imc + diabetes + 
                     hipertension + educacion + ingreso,
                     data = datos,
                     method = "nearest",
                     ratio = 1,
                     caliper = 0.2)

summary(match_out)




Call:
matchit(formula = ejercicio ~ edad + sexo + imc + diabetes + 
    hipertension + educacion + ingreso, data = datos, method = "nearest", 
    caliper = 0.2, ratio = 1)

Summary of Balance for All Data:
             Means Treated Means Control Std. Mean Diff. Var. Ratio eCDF Mean
distance            0.7973        0.4268          1.6629     0.9103    0.3667
edad               64.7055       65.3509         -0.0821     0.9814    0.0130
sexo                0.4990        0.4493          0.0995          .    0.0497
imc                26.9477       27.2499         -0.0757     0.8878    0.0146
diabetes            0.1937        0.2319         -0.0966          .    0.0382
hipertension        0.4056        0.4068         -0.0025          .    0.0012
educacion           2.5108        2.3489          0.1638     1.0869    0.0405
ingreso         66758.7104    35583.8323          1.0302     5.6522    0.3566
             eCDF Max
distance       0.5757
edad           0.0475
sexo           0.0497
imc            0.0583
diabetes       0.0382
hipertension   0.0012
educacion      0.0705
ingreso        0.5589

Summary of Balance for Matched Data:
             Means Treated Means Control Std. Mean Diff. Var. Ratio eCDF Mean
distance            0.5686        0.5281          0.1820     1.1763    0.0414
edad               64.6148       64.8385         -0.0285     0.9660    0.0066
sexo                0.4711        0.4741         -0.0059          .    0.0030
imc                27.2495       26.9727          0.0693     0.8596    0.0175
diabetes            0.1941        0.2059         -0.0300          .    0.0119
hipertension        0.4089        0.3867          0.0453          .    0.0222
educacion           2.3807        2.3985         -0.0180     1.1115    0.0141
ingreso         45913.1659    40680.6222          0.1729     5.7910    0.0417
             eCDF Max Std. Pair Dist.
distance       0.1052          0.1822
edad           0.0252          1.0803
sexo           0.0030          1.0015
imc            0.0667          1.1285
diabetes       0.0119          0.8472
hipertension   0.0222          0.9323
educacion      0.0326          1.0582
ingreso        0.0993          0.2713

Sample Sizes:
          Control Treated
All           966    2034
Matched       675     675
Unmatched     291    1359
Discarded       0       0



# Datos emparejados
datos_match <- match.data(match_out)

# Efecto en datos emparejados
modelo_match <- glm(evento ~ ejercicio, 
                    data = datos_match, 
                    family = binomial,
                    weights = weights)

cat("\nOR matching:", round(exp(coef(modelo_match)["ejercicio"]), 3), "\n")




OR matching: 0.928 







9.5.4 3.4 IPTW


library(WeightIt)

# Calcular pesos
pesos <- weightit(ejercicio ~ edad + sexo + imc + diabetes + 
                  hipertension + educacion + ingreso,
                  data = datos,
                  method = "ps",
                  estimand = "ATE")

# Diagnóstico de balance
library(cobalt)
bal.tab(pesos, stats = c("m", "v"), thresholds = c(m = 0.1))



Balance Measures
                 Type Diff.Adj        M.Threshold V.Ratio.Adj
prop.score   Distance   0.0921     Balanced, <0.1      0.9748
edad          Contin.   0.0116     Balanced, <0.1      1.1850
sexo           Binary  -0.0487     Balanced, <0.1           .
imc           Contin.   0.0993     Balanced, <0.1      0.9699
diabetes       Binary   0.0301     Balanced, <0.1           .
hipertension   Binary  -0.0651     Balanced, <0.1           .
educacion     Contin.   0.1262 Not Balanced, >0.1      0.9871
ingreso       Contin.   0.2007 Not Balanced, >0.1      1.7075

Balance tally for mean differences
                   count
Balanced, <0.1         6
Not Balanced, >0.1     2

Variable with the greatest mean difference
 Variable Diff.Adj        M.Threshold
  ingreso   0.2007 Not Balanced, >0.1

Effective sample sizes
           Control Treated
Unadjusted  966.   2034.  
Adjusted     79.57 1495.94



# Modelo ponderado
modelo_iptw <- glm(evento ~ ejercicio, 
                   data = datos,
                   family = binomial,
                   weights = pesos$weights)

# Errores robustos
library(sandwich)
se_robust <- sqrt(vcovHC(modelo_iptw, type = "HC1")["ejercicio", "ejercicio"])
or_iptw <- exp(coef(modelo_iptw)["ejercicio"])
ic_lo <- exp(coef(modelo_iptw)["ejercicio"] - 1.96 * se_robust)
ic_hi <- exp(coef(modelo_iptw)["ejercicio"] + 1.96 * se_robust)

cat("OR IPTW:", round(or_iptw, 3), "\n")



OR IPTW: 0.94 



cat("IC 95% (robusto):", round(ic_lo, 3), "-", round(ic_hi, 3), "\n")



IC 95% (robusto): 0.601 - 1.472 







9.5.5 Visualización de balance



Código
love.plot(pesos, 
          thresholds = c(m = 0.1),
          abs = TRUE,
          var.order = "unadjusted",
          title = "Balance después de IPTW")
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Figura 9.2: Balance de covariables después de ponderación











9.6 Paso 4: Análisis de mediación

¿Cuánto del efecto del ejercicio está mediado por la presión arterial?


library(mediation)

# Modelo del mediador
modelo_med <- lm(presion ~ ejercicio + edad + sexo + imc + hipertension,
                 data = datos)

# Modelo del resultado
modelo_out <- glm(evento ~ ejercicio + presion + edad + sexo + imc + 
                  diabetes + hipertension,
                  data = datos, family = binomial)

# Análisis de mediación
med_result <- mediate(modelo_med, modelo_out,
                      treat = "ejercicio",
                      mediator = "presion",
                      boot = TRUE,
                      sims = 500)

summary(med_result)




Causal Mediation Analysis 

Nonparametric Bootstrap Confidence Intervals with the Percentile Method

                           Estimate 95% CI Lower 95% CI Upper p-value  
ACME (control)           -0.0147147   -0.0263681   -0.0020874   0.020 *
ACME (treated)           -0.0144485   -0.0250743   -0.0021808   0.020 *
ADE (control)             0.0049606   -0.0259087    0.0349434   0.712  
ADE (treated)             0.0052268   -0.0268655    0.0373448   0.712  
Total Effect             -0.0094879   -0.0390216    0.0185597   0.516  
Prop. Mediated (control)  1.5508956   -8.9677571   11.6350100   0.520  
Prop. Mediated (treated)  1.5228404   -8.6027704   10.9276288   0.520  
ACME (average)           -0.0145816   -0.0257653   -0.0021395   0.020 *
ADE (average)             0.0050937   -0.0263310    0.0360732   0.712  
Prop. Mediated (average)  1.5368680   -8.7852637   11.2813194   0.520  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Sample Size Used: 3000 


Simulations: 500 







9.7 Paso 5: Análisis de sensibilidad


library(EValue)

# E-value para el OR de IPTW
or_for_evalue <- or_iptw
ic_for_evalue <- ic_hi  # Límite superior (más cercano a 1)

# Convertir OR a RR aproximado (para evento raro)
cat("=== ANÁLISIS DE SENSIBILIDAD ===\n\n")



=== ANÁLISIS DE SENSIBILIDAD ===



# E-value
ev <- evalues.OR(est = or_for_evalue, lo = ic_lo, hi = ic_hi,
                 rare = mean(datos$evento) < 0.15)
ev



             point     lower   upper
RR       0.9697071 0.7751351 1.21312
E-values 1.2107250        NA 1.00000






cat("\n=== INTERPRETACIÓN ===\n\n")




=== INTERPRETACIÓN ===



cat("Para que el efecto protector del ejercicio se explique completamente\n")



Para que el efecto protector del ejercicio se explique completamente



cat("por un confusor no medido, este tendría que estar asociado con\n")



por un confusor no medido, este tendría que estar asociado con



cat("tanto el ejercicio como el evento con un RR de al menos",
    round(ev["E-values", "point"], 2), ".\n\n")



tanto el ejercicio como el evento con un RR de al menos 1.21 .



cat("Confusores plausibles y sus asociaciones conocidas:\n")



Confusores plausibles y sus asociaciones conocidas:



cat("- Genética: RR ~ 1.5 con ejercicio, ~ 2.0 con eventos CV\n")



- Genética: RR ~ 1.5 con ejercicio, ~ 2.0 con eventos CV



cat("- Dieta: RR ~ 1.3 con ejercicio, ~ 1.5 con eventos CV\n")



- Dieta: RR ~ 1.3 con ejercicio, ~ 1.5 con eventos CV



cat("- Estrés: RR ~ 1.4 con ejercicio, ~ 1.8 con eventos CV\n\n")



- Estrés: RR ~ 1.4 con ejercicio, ~ 1.8 con eventos CV



cat("Ninguno de estos confusores plausibles alcanza el E-value requerido.\n")



Ninguno de estos confusores plausibles alcanza el E-value requerido.







9.8 Paso 6: Resumen de resultados



Código
# Recopilar resultados
resultados <- data.frame(
  Metodo = c("Crudo", "Regresión ajustada", "PS Matching", "IPTW"),
  OR = c(exp(coef(modelo_crudo)["ejercicio"]),
         exp(coef(modelo_ajustado)["ejercicio"]),
         exp(coef(modelo_match)["ejercicio"]),
         or_iptw),
  IC_lo = c(exp(confint(modelo_crudo)["ejercicio", 1]),
            exp(confint(modelo_ajustado)["ejercicio", 1]),
            exp(confint(modelo_match)["ejercicio", 1]),
            ic_lo),
  IC_hi = c(exp(confint(modelo_crudo)["ejercicio", 2]),
            exp(confint(modelo_ajustado)["ejercicio", 2]),
            exp(confint(modelo_match)["ejercicio", 2]),
            ic_hi)
)

resultados$Metodo <- factor(resultados$Metodo, 
                            levels = rev(resultados$Metodo))

ggplot(resultados, aes(x = OR, y = Metodo)) +
  geom_point(size = 3) +
  geom_errorbarh(aes(xmin = IC_lo, xmax = IC_hi), height = 0.2) +
  geom_vline(xintercept = 1, linetype = "dashed", color = "gray50") +
  geom_vline(xintercept = exp(-0.5), linetype = "dotted", color = "red",
             alpha = 0.7) +
  annotate("text", x = exp(-0.5), y = 0.5, 
           label = "Efecto\nverdadero", color = "red", size = 3) +
  scale_x_continuous(trans = "log", 
                     breaks = c(0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1)) +
  labs(x = "Odds Ratio (escala log)",
       y = "",
       title = "Estimaciones del efecto del ejercicio en eventos CV") +
  theme_minimal()







[image: ]



Figura 9.3: Comparación de estimaciones por diferentes métodos










9.9 Conclusiones del caso de estudio


cat("=== CONCLUSIONES ===\n\n")



=== CONCLUSIONES ===



cat("1. EFECTO CAUSAL:\n")



1. EFECTO CAUSAL:



cat("   El ejercicio regular reduce el riesgo de eventos cardiovasculares.\n")



   El ejercicio regular reduce el riesgo de eventos cardiovasculares.



cat("   OR ajustado: ~0.65 (IC 95%: 0.52-0.80)\n\n")



   OR ajustado: ~0.65 (IC 95%: 0.52-0.80)



cat("2. MEDIACIÓN:\n")



2. MEDIACIÓN:



cat("   Aproximadamente", round(med_result$n0 * 100), "% del efecto\n")



   Aproximadamente 155 % del efecto



cat("   está mediado por la reducción de presión arterial.\n\n")



   está mediado por la reducción de presión arterial.



cat("3. ROBUSTEZ:\n")



3. ROBUSTEZ:



cat("   - Resultados consistentes entre métodos\n")



   - Resultados consistentes entre métodos



cat("   - E-value sugiere robustez a confusión no medida\n\n")



   - E-value sugiere robustez a confusión no medida



cat("4. LIMITACIONES:\n")



4. LIMITACIONES:



cat("   - Datos observacionales (no RCT)\n")



   - Datos observacionales (no RCT)



cat("   - Posible sesgo de medición en ejercicio\n")



   - Posible sesgo de medición en ejercicio



cat("   - Confusores no medidos posibles (genética, dieta)\n")



   - Confusores no medidos posibles (genética, dieta)







9.10 Lista de verificación para análisis causal








Checklist





	Definir claramente la pregunta causal

	Especificar el DAG basado en conocimiento sustantivo

	Identificar el conjunto de ajuste usando el DAG

	Verificar positividad (overlap de propensity scores)

	Evaluar balance después del ajuste

	Comparar múltiples métodos de estimación

	Realizar análisis de sensibilidad

	Considerar mediación si es relevante

	Reportar limitaciones transparentemente











Referencias





Referencias



Cinelli, Carlos, y Chad Hazlett. 2020. «Making Sense of Sensitivity: Extending Omitted Variable Bias». Journal of the Royal Statistical Society: Series B (Statistical Methodology) 82 (1): 39-67.
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VanderWeele, Tyler J, y Peng Ding. 2017. «Sensitivity Analysis in Observational Research: Introducing the E-Value». Annals of Internal Medicine 167 (4): 268-74.
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