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Prefacio

Este libro presenta los métodos modernos de inferencia causal aplicados a estudios
observacionales en salud y ciencias sociales. El contenido se basa en mis notas sobre el tema a
lo largo de varios proyectos en los ultimos años y más recientemente en las notas de preparación
del material para un curso dictado en la Universidad ICESI, Cali, Colombia.

¿Para quién es este libro?

Este material está diseñado para:

• Estudiantes de posgrado en epidemiología, bioestadística y salud pública
• Investigadores que trabajan con datos observacionales
• Profesionales interesados en métodos causales modernos

Prerrequisitos

Se asume conocimiento previo de:

• Estadística básica (probabilidad, distribuciones, pruebas de hipótesis)
• Regresión lineal y logística
• Fundamentos de epidemiología
• Programación básica en R

Estructura del libro

El libro está organizado en tres partes:

1. Fundamentos: Diagramas causales (DAGs), confusión y sesgo de selección
2. Métodos Avanzados: Variables instrumentales, supervivencia, sensibilidad y mediación
3. Aplicación: Caso práctico integrando los métodos del curso
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Software

Los ejemplos de código utilizan R con los siguientes paquetes principales:

# Paquetes principales
install.packages(c(
"dagitty", # DAGs
"ggdag", # Visualización de DAGs
"MatchIt", # Matching
"WeightIt", # Ponderación
"survival", # Análisis de supervivencia
"mediation", # Análisis de mediación
"sensemakr", # Análisis de sensibilidad
"tidyverse" # Manipulación de datos

))

Agradecimientos

Agradezco a la Universidad ICESI por la oportunidad de desarrollar este curso, y a los
estudiantes cuyas preguntas y comentarios han mejorado este material.

Sobre el autor

Edgar Muñoz es biomedical data scientist, estadístico y epidemiólogo. Actualmente es data
scientist en el University of Texas Health Science Center at San Antonio, con más de 25 años de
experiencia en investigación en salud pública. Sus áreas de especialización incluyen la inferencia
causal, la epidemiología espacial, los modelos multinivel, las disparidades en el cáncer y la
inteligencia artificial aplicada a la salud.

• ORCID
• Google Scholar
• Sitio web

Licencia

Este trabajo está bajo licencia Creative Commons Attribution-NonCommercial-ShareAlike
4.0.
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1 Introducción

1.1 ¿Qué es la inferencia causal?

La inferencia causal es el proceso de determinar si una relación entre variables es causal o
meramente asociativa. En otras palabras, queremos saber si un cambio en una variable causa
un cambio en otra.

INFO Definición

La inferencia causal busca responder la pregunta: “¿Qué pasaría si…?” — una pregunta
contrafactual que va más allá de la simple asociación estadística.

1.2 Correlación no implica causalidad

Este principio fundamental de la estadística nos recuerda que observar una asociación entre
dos variables no significa que una cause la otra. Considera estos ejemplos:

1. Helados y ahogamientos: Las ventas de helado están correlacionadas con las muertes
por ahogamiento. ¿Los helados causan ahogamientos? No — ambos aumentan en verano.

2. Cigüeñas y nacimientos: En algunas regiones europeas, el número de cigüeñas está
correlacionado con la tasa de natalidad. ¿Las cigüeñas traen bebés? No — ambos están
asociados con áreas rurales.

1.3 El problema fundamental de la inferencia causal

El problema fundamental de la inferencia causal es que no podemos observar el mismo
individuo bajo dos condiciones diferentes al mismo tiempo. Si una persona recibe un tratamiento,
no podemos saber qué hubiera pasado si no lo hubiera recibido.
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flowchart LR
A[Individuo] --> B{Tratamiento}
B -->|Sí| C[Resultado observado]
B -->|No| D[Resultado contrafactual]
style D stroke-dasharray: 5 5

Figura 1.1: El contrafactual nunca se observa

1.4 Soluciones al problema

A lo largo de la historia, se han desarrollado diferentes enfoques para abordar este problema:

1.4.1 Experimentos aleatorizados

El ensayo clínico aleatorizado (RCT) es el estándar de oro porque:

• La aleatorización crea grupos comparables
• Elimina el sesgo de confusión
• Permite estimar el efecto causal promedio

Sin embargo, los RCTs no siempre son: - Éticos (no podemos asignar exposiciones dañinas) -
Factibles (alto costo, tiempo) - Generalizables (poblaciones seleccionadas)

1.4.2 Estudios observacionales

Los estudios observacionales son frecuentemente la única opción disponible. Para hacer
inferencias causales válidas, necesitamos:

1. Identificar las fuentes de sesgo

10



2. Controlar la confusión
3. Evaluar la sensibilidad de los resultados

1.5 El enfoque de este libro

Este libro adopta un enfoque basado en Diagramas Acíclicos Dirigidos (DAGs),
desarrollado principalmente por Judea Pearl (Pearl 2009). Este enfoque nos permite:

• Representar visualmente nuestras asunciones causales
• Identificar sistemáticamente las fuentes de sesgo
• Determinar qué variables debemos (y no debemos) controlar

library(ggdag)
library(ggplot2)

dag <- dagify(
Y ~ X + C,
X ~ C,
exposure = "X",
outcome = "Y",
labels = c(

Y = "Resultado",
X = "Exposición",
C = "Confusor"

),
coords = list(

x = c(X = 0, Y = 2, C = 1),
y = c(X = 0, Y = 0, C = 1)

)
)

ggdag(dag, text = FALSE, use_labels = "label") +
theme_dag() +
labs(title = "Confusión clásica")
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Confusor

Exposición Resultado

Confusión clásica

Figura 1.2: Un DAG simple mostrando confusión

1.6 Objetivos de aprendizaje

Al finalizar este libro, serás capaz de:

1. Construir e interpretar DAGs para problemas de investigación
2. Identificar y controlar fuentes de sesgo en estudios observacionales
3. Aplicar métodos de estratificación, matching y ponderación
4. Reconocer y manejar el sesgo de selección
5. Usar variables instrumentales cuando estén disponibles
6. Realizar análisis de supervivencia con enfoque causal
7. Evaluar la sensibilidad de tus resultados
8. Conducir análisis de mediación causal

Referencias
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Part I

Parte I: Fundamentos
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2 DAGs y Confusión

2.1 Objetivos de aprendizaje

Al finalizar este capítulo, serás capaz de:

• Definir y construir Diagramas Acíclicos Dirigidos (DAGs)
• Distinguir entre causalidad y asociación
• Identificar confusores usando DAGs
• Aplicar las reglas de d-separación

2.2 ¿Qué es un DAG?

Un Diagrama Acíclico Dirigido (DAG, por sus siglas en inglés) es una representación gráfica
de las relaciones causales entre variables.

INFO Definición

Un DAG es un grafo donde:

• Dirigido: Las flechas indican la dirección de la causalidad
• Acíclico: No hay ciclos (no puedes volver a una variable siguiendo las flechas)

2.2.1 Componentes de un DAG

library(ggdag)
library(ggplot2)

# DAG simple
dag <- dagify(
Y ~ X + C,
X ~ C,
coords = list(
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x = c(X = 0, Y = 2, C = 1),
y = c(X = 0, Y = 0, C = 1)

)
)

ggdag(dag) +
theme_dag() +
labs(title = "DAG con exposición (X), resultado (Y) y confusor (C)")

C

X Y

DAG con exposición (X), resultado (Y) y confusor (C)

Figura 2.1: Componentes básicos de un DAG

2.3 Causalidad vs Asociación

2.3.1 Asociación

Dos variables están asociadas si conocer el valor de una proporciona información sobre el
valor de la otra.

𝑃(𝑌 |𝑋) ≠ 𝑃(𝑌 )
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2.3.2 Causalidad

Una variable causa otra si intervenir sobre la primera cambia la distribución de la segunda.

𝑃(𝑌 |𝑑𝑜(𝑋)) ≠ 𝑃(𝑌 )

La notación 𝑑𝑜(𝑋) representa una intervención, no una observación.

2.4 Tipos de caminos en un DAG

2.4.1 Cadena (mediación)

chain <- dagify(
M ~ X,
Y ~ M,
coords = list(

x = c(X = 0, M = 1, Y = 2),
y = c(X = 0, M = 0, Y = 0)

)
)

ggdag(chain) +
theme_dag() +
labs(title = "Cadena (Mediación)")
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MX Y

Cadena (Mediación)

Figura 2.2: Cadena: X → M → Y

En una cadena, X causa Y a través de M. Si controlamos por M, bloqueamos el efecto.

2.4.2 Fork (confusión)

fork <- dagify(
X ~ C,
Y ~ C,
coords = list(

x = c(X = 0, C = 1, Y = 2),
y = c(X = 0, C = 1, Y = 0)

)
)

ggdag(fork) +
theme_dag() +
labs(title = "Fork (Confusión)")
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C

X Y

Fork (Confusión)

Figura 2.3: Fork: X ← C → Y

En un fork, C es causa común de X e Y. X e Y están asociadas pero X no causa Y.

2.4.3 Collider (colisionador)

collider <- dagify(
M ~ X + Y,
coords = list(

x = c(X = 0, M = 1, Y = 2),
y = c(X = 0, M = -0.5, Y = 0)

)
)

ggdag(collider) +
theme_dag() +
labs(title = "Collider")
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M

X Y

Collider

Figura 2.4: Collider: X → M ← Y

En un collider, M es efecto de X e Y. X e Y no están asociadas, pero se vuelven asociadas si
controlamos por M.

2.5 D-separación

La d-separación es un criterio para determinar si dos variables son independientes dado un
conjunto de variables condicionantes.

Exclamation Reglas de d-separación

1. Cadenas y forks están bloqueados si condicionamos en el nodo intermedio
2. Colliders están bloqueados por defecto, pero se abren si condicionamos en ellos (o

sus descendientes)

2.5.1 Ejemplo
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example_dag <- dagify(
Y ~ X + U,
X ~ C,
C ~ U,
M ~ X + Y,
exposure = "X",
outcome = "Y",
coords = list(

x = c(X = 0, Y = 2, C = 0, U = 1, M = 1),
y = c(X = 0, Y = 0, C = 1, U = 1, M = -1)

)
)

ggdag_dseparated(example_dag, from = "X", to = "Y") +
theme_dag() +
labs(title = "¿X y Y son d-separadas?")

C

M

U

X Y

d−relationship

d−connected

d−separated

adjusted

adjusted

unadjusted

¿X y Y son d−separadas?

Figura 2.5: Ejemplo de d-separación
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2.6 Identificación de confusores

Un confusor es una variable que:

1. Causa (o está asociada con) la exposición
2. Causa (o está asociada con) el resultado
3. No está en el camino causal de X a Y

library(dagitty)

g <- dagitty("dag {
X -> Y
C -> X
C -> Y

}")

adjustmentSets(g, exposure = "X", outcome = "Y")

{ C }

2.7 Usando dagitty en R

El paquete dagitty permite:

1. Definir DAGs
2. Encontrar conjuntos de ajuste
3. Verificar d-separación

library(dagitty)

# Definir DAG
mi_dag <- dagitty("dag {
Tratamiento -> Resultado
Edad -> Tratamiento
Edad -> Resultado
Sexo -> Resultado

}")

# Encontrar variables de ajuste
adjustmentSets(mi_dag,

21



exposure = "Tratamiento",
outcome = "Resultado")

{ Edad }

2.8 Aplicación: Ejemplo con datos

Consideremos un estudio sobre el efecto del ejercicio en la presión arterial:

# Simular datos
set.seed(42)
n <- 500

edad <- rnorm(n, 50, 10)
ejercicio <- 0.5 * edad + rnorm(n, 0, 5) # Edad afecta ejercicio
presion <- 100 + 0.5 * edad - 0.3 * ejercicio + rnorm(n, 0, 10)

datos <- data.frame(edad, ejercicio, presion)

# Sin ajustar por edad (sesgado)
modelo_crudo <- lm(presion ~ ejercicio, data = datos)

# Ajustando por edad
modelo_ajustado <- lm(presion ~ ejercicio + edad, data = datos)

# Comparar
cat("Efecto crudo:", round(coef(modelo_crudo)[2], 3), "\n")

Efecto crudo: 0.208

cat("Efecto ajustado:", round(coef(modelo_ajustado)[2], 3), "\n")

Efecto ajustado: -0.298
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2.9 Ejercicios

LIGHTBULB Ejercicio 1

Construye un DAG para el siguiente escenario: Queremos estudiar el efecto del consumo
de café en enfermedades cardíacas. Sabemos que el tabaquismo está asociado tanto con el
consumo de café como con las enfermedades cardíacas.

LIGHTBULB Ejercicio 2

Usando el paquete dagitty, determina el conjunto mínimo de variables que debes controlar
para estimar el efecto causal.

2.10 Resumen

• Los DAGs son herramientas gráficas para representar asunciones causales
• Existen tres estructuras básicas: cadenas, forks y colliders
• La d-separación nos ayuda a identificar qué variables controlar
• Controlar por un collider introduce sesgo
• El paquete dagitty facilita el trabajo con DAGs en R

Referencias
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3 Control de Confusión

3.1 Objetivos de aprendizaje

Al finalizar este capítulo, serás capaz de:

• Definir confusión y sus consecuencias
• Aplicar métodos de estratificación
• Implementar matching (emparejamiento)
• Utilizar ponderación por propensity score

3.2 ¿Qué es la confusión?

La confusión ocurre cuando una variable externa está asociada tanto con la exposición como
con el resultado, distorsionando la estimación del efecto causal.

Exclamation-Triangle Consecuencia

Sin control adecuado de la confusión, podemos:

• Encontrar una asociación donde no existe efecto causal
• No detectar un efecto causal real
• Subestimar o sobreestimar la magnitud del efecto

3.3 Métodos para controlar confusión

3.3.1 1. Estratificación

La estratificación divide los datos en grupos homogéneos según el confusor.
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# Simular datos
set.seed(123)
n <- 1000

# Confusor: edad (0 = joven, 1 = mayor)
edad <- rbinom(n, 1, 0.5)

# Exposición influenciada por edad
tratamiento <- rbinom(n, 1, 0.3 + 0.4 * edad)

# Resultado influenciado por ambos
resultado <- 50 + 10 * edad + 5 * tratamiento + rnorm(n, 0, 5)

datos <- data.frame(edad, tratamiento, resultado)

# Efecto crudo
cat("Efecto crudo:",

round(mean(resultado[tratamiento == 1]) -
mean(resultado[tratamiento == 0]), 2), "\n")

Efecto crudo: 9.01

# Efecto estratificado
efecto_jovenes <- mean(resultado[tratamiento == 1 & edad == 0]) -

mean(resultado[tratamiento == 0 & edad == 0])
efecto_mayores <- mean(resultado[tratamiento == 1 & edad == 1]) -

mean(resultado[tratamiento == 0 & edad == 1])

cat("Efecto en jóvenes:", round(efecto_jovenes, 2), "\n")

Efecto en jóvenes: 4.7

cat("Efecto en mayores:", round(efecto_mayores, 2), "\n")

Efecto en mayores: 5.17

3.3.2 2. Matching (Emparejamiento)

El matching empareja individuos tratados y no tratados con características similares.

25



library(MatchIt)

# Datos más complejos
set.seed(456)
n <- 500

datos_match <- data.frame(
edad = rnorm(n, 50, 10),
imc = rnorm(n, 25, 5),
sexo = rbinom(n, 1, 0.5)

)

# Probabilidad de tratamiento
prob_trat <- plogis(-2 + 0.05 * datos_match$edad +

0.1 * datos_match$imc)
datos_match$tratamiento <- rbinom(n, 1, prob_trat)

# Resultado
datos_match$resultado <- 100 +
0.5 * datos_match$edad +
2 * datos_match$imc -
5 * datos_match$tratamiento +
rnorm(n, 0, 10)

# Matching
match_out <- matchit(tratamiento ~ edad + imc + sexo,

data = datos_match,
method = "nearest",
ratio = 1)

summary(match_out)

Call:
matchit(formula = tratamiento ~ edad + imc + sexo, data = datos_match,

method = "nearest", ratio = 1)

Summary of Balance for All Data:
Means Treated Means Control Std. Mean Diff. Var. Ratio eCDF Mean

distance 0.9316 0.8815 0.9576 0.3455 0.2036
edad 51.4860 44.4794 0.7323 1.0378 0.1903
imc 25.1570 24.0066 0.2318 1.1417 0.0639
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sexo 0.4871 0.4722 0.0297 . 0.0148
eCDF Max

distance 0.3376
edad 0.3103
imc 0.1573
sexo 0.0148

Summary of Balance for Matched Data:
Means Treated Means Control Std. Mean Diff. Var. Ratio eCDF Mean

distance 0.9887 0.8815 2.0500 0.0010 0.6529
edad 68.4310 44.4794 2.5033 0.2193 0.6264
imc 28.4034 24.0066 0.8859 0.9017 0.2409
sexo 0.5556 0.4722 0.1667 . 0.0833

eCDF Max Std. Pair Dist.
distance 1.0000 2.0500
edad 0.9722 2.5033
imc 0.3889 1.3458
sexo 0.0833 0.8336

Sample Sizes:
Control Treated

All 36 464
Matched 36 36
Unmatched 0 428
Discarded 0 0

3.3.2.1 Balance después del matching

library(ggplot2)

plot(match_out, type = "jitter", interactive = FALSE)
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Distribution of Propensity Scores

Propensity Score

0.6 0.7 0.8 0.9 1.0

Unmatched Treated Units

Matched Treated Units

Matched Control Units

Unmatched Control Units

Figura 3.1: Balance de covariables antes y después del matching

3.3.2.2 Estimación del efecto

# Obtener datos emparejados
datos_emparejados <- match.data(match_out)

# Efecto en datos emparejados
modelo_match <- lm(resultado ~ tratamiento,

data = datos_emparejados,
weights = weights)

summary(modelo_match)$coefficients["tratamiento", ]

Estimate Std. Error t value Pr(>|t|)
1.784918e+01 3.044303e+00 5.863141e+00 1.364022e-07

3.3.3 3. Propensity Score

El propensity score es la probabilidad de recibir el tratamiento dado las covariables.
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𝑒(𝑋) = 𝑃(𝑇 = 1|𝑋)

# Estimar propensity score
ps_model <- glm(tratamiento ~ edad + imc + sexo,

data = datos_match,
family = binomial)

datos_match$ps <- predict(ps_model, type = "response")

# Visualizar distribución
ggplot(datos_match, aes(x = ps, fill = factor(tratamiento))) +
geom_density(alpha = 0.5) +
labs(title = "Distribución del Propensity Score",

x = "Propensity Score",
fill = "Tratamiento") +

theme_minimal()

0

3

6

9

0.6 0.7 0.8 0.9 1.0
Propensity Score

de
ns

ity

Tratamiento

0

1

Distribución del Propensity Score

3.3.4 4. Ponderación (IPTW)

La ponderación por el inverso del propensity score (IPTW) crea una pseudo-población
donde tratamiento y covariables son independientes.
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𝑤𝑖 = 𝑇𝑖
𝑒(𝑋𝑖)

+ 1 − 𝑇𝑖
1 − 𝑒(𝑋𝑖)

library(WeightIt)

# Calcular pesos
pesos <- weightit(tratamiento ~ edad + imc + sexo,

data = datos_match,
method = "ps",
estimand = "ATE")

summary(pesos)

Summary of weights

- Weight ranges:

Min Max
treated 1.004 || 1.498
control 2.467 |---------------------------| 53.778

- Units with the 5 most extreme weights by group:

450 253 207 60 33
treated 1.339 1.354 1.391 1.462 1.498

27 24 21 14 13
control 21.514 23.175 24.725 25.17 53.778

- Weight statistics:

Coef of Var MAD Entropy # Zeros
treated 0.063 0.045 0.002 0
control 0.715 0.492 0.208 0

- Effective Sample Sizes:

Control Treated
Unweighted 36. 464.
Weighted 24.04 462.18
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# Modelo ponderado
modelo_iptw <- lm(resultado ~ tratamiento,

data = datos_match,
weights = pesos$weights)

summary(modelo_iptw)$coefficients["tratamiento", ]

Estimate Std. Error t value Pr(>|t|)
-2.38609550 1.27698752 -1.86853471 0.06227447

3.4 Comparación de métodos

Método Ventajas Desventajas

Estratificación Simple, transparente Solo para pocos confusores
Matching Intuitivo, balance visible Pérdida de muestra
PS Matching Reduce dimensionalidad Depende del modelo de PS
IPTW Usa toda la muestra Pesos extremos posibles

3.5 Diagnósticos importantes

3.5.1 Balance de covariables

library(cobalt)

love.plot(pesos,
thresholds = c(m = 0.1),
abs = TRUE,
var.order = "unadjusted")
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sexo

imc

edad

prop.score

0.0 0.2 0.4 0.6
Absolute Mean Differences

Sample

Unadjusted

Adjusted

Covariate Balance

Figura 3.2: Love plot: comparación de balance

3.5.2 Distribución de pesos

summary(pesos$weights)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.004 1.033 1.063 1.955 1.119 53.778

# Pesos extremos pueden indicar violación de positividad
cat("Pesos > 10:", sum(pesos$weights > 10), "\n")

Pesos > 10: 19
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3.6 Ejercicios

LIGHTBULB Ejercicio 1

Usando el dataset simulado, compara los resultados de:

1. Análisis crudo
2. Matching por edad e IMC
3. IPTW

¿Cuál se acerca más al efecto verdadero (-5)?

LIGHTBULB Ejercicio 2

Evalúa el impacto de diferentes métodos de matching (nearest, optimal, genetic) en el
balance y la estimación del efecto.

3.7 Resumen

• La confusión distorsiona las estimaciones de efectos causales
• La estratificación es útil para pocos confusores
• El matching empareja individuos similares
• El propensity score resume múltiples confusores en un solo número
• IPTW permite usar toda la muestra
• Siempre verificar el balance después del ajuste

Referencias
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4 Sesgo de Selección

4.1 Objetivos de aprendizaje

Al finalizar este capítulo, serás capaz de:

• Definir sesgo de selección desde una perspectiva causal
• Identificar el sesgo de colisionador
• Reconocer diferentes tipos de sesgo de selección
• Proponer estrategias para mitigar estos sesgos

4.2 ¿Qué es el sesgo de selección?

El sesgo de selección ocurre cuando la asociación entre exposición y resultado difiere entre
los participantes del estudio y la población objetivo.

Exclamation Perspectiva causal

Desde el marco de DAGs, el sesgo de selección surge cuando condicionamos en un collider
o en descendientes de un collider.

4.3 El sesgo de colisionador

Un colisionador es una variable que es efecto común de dos o más variables.

library(ggdag)
library(ggplot2)

collider_dag <- dagify(
S ~ X + Y,
coords = list(

x = c(X = 0, Y = 2, S = 1),
y = c(X = 0, Y = 0, S = -0.5)
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),
labels = c(

X = "Exposición",
Y = "Resultado",
S = "Selección"

)
)

ggdag_adjust(collider_dag, var = "S",
text = FALSE, use_labels = "label") +

theme_dag() +
labs(title = "Condicionar en el colisionador induce sesgo")

Selección

Exposición Resultado

adjusted

unadjusted

adjusted

unadjusted

adjusted

adjusted

adjusted

unadjusted

activated by 
adjustment 
for collider

Condicionar en el colisionador induce sesgo

Figura 4.1: Sesgo de colisionador: condicionar en S abre el camino X → S ← Y

4.3.1 Ejemplo: La paradoja del índice de colisión

set.seed(789)
n <- 10000
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# Habilidad académica y habilidad deportiva (independientes)
academico <- rnorm(n, 0, 1)
deportivo <- rnorm(n, 0, 1)

# Admisión basada en ambas (collider)
admitido <- (academico + deportivo) > 1

# En la población general
cor(academico, deportivo)

[1] -0.01700133

# Entre los admitidos solamente
cor(academico[admitido], deportivo[admitido])

[1] -0.6322336

INFO Interpretación

Aunque las habilidades son independientes en la población, entre los admitidos aparece
una correlación negativa. Esto es porque si una persona con alta habilidad académica
fue admitida, no necesita alta habilidad deportiva (y viceversa).

4.4 Tipos de sesgo de selección

4.4.1 1. Sesgo de participación

Ocurre cuando la participación en el estudio depende de la exposición y el resultado.

part_dag <- dagify(
Y ~ X,
S ~ X + Y,
coords = list(

x = c(X = 0, Y = 2, S = 1),
y = c(X = 0, Y = 0, S = -1)

)
)
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ggdag(part_dag) +
theme_dag() +
annotate("text", x = 1, y = -1.5,

label = "Solo observamos S = 1",
size = 3, color = "red")

S

X Y

Solo observamos S = 1

Figura 4.2: Sesgo de participación

4.4.2 2. Sesgo de pérdida de seguimiento

En estudios longitudinales, la pérdida de seguimiento puede estar relacionada con exposición y
resultado.

# Simulación de pérdida de seguimiento
set.seed(101)
n <- 2000

datos_fup <- data.frame(
tratamiento = rbinom(n, 1, 0.5)

)
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# El resultado verdadero
datos_fup$resultado_verdadero <- 50 - 10 * datos_fup$tratamiento +

rnorm(n, 0, 15)

# Pérdida de seguimiento más probable en no tratados con mal resultado
prob_perdida <- plogis(-2 + 1.5 * (1 - datos_fup$tratamiento) -

0.05 * datos_fup$resultado_verdadero)
datos_fup$perdido <- rbinom(n, 1, prob_perdida)

# Resultado observado
datos_fup$resultado_observado <- ifelse(datos_fup$perdido == 1,

NA,
datos_fup$resultado_verdadero)

# Efecto verdadero
efecto_verdadero <- mean(datos_fup$resultado_verdadero[datos_fup$tratamiento == 1]) -

mean(datos_fup$resultado_verdadero[datos_fup$tratamiento == 0])

# Efecto observado (sesgado)
observados <- datos_fup[!is.na(datos_fup$resultado_observado), ]
efecto_observado <- mean(observados$resultado_observado[observados$tratamiento == 1]) -

mean(observados$resultado_observado[observados$tratamiento == 0])

cat("Efecto verdadero:", round(efecto_verdadero, 2), "\n")

Efecto verdadero: -8.99

cat("Efecto observado:", round(efecto_observado, 2), "\n")

Efecto observado: -9.43

cat("Sesgo:", round(efecto_observado - efecto_verdadero, 2), "\n")

Sesgo: -0.45

4.4.3 3. Sesgo del sobreviviente

Estudiamos solo a quienes “sobrevivieron” a un proceso de selección.
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surv_dag <- dagify(
Muerte ~ Exposicion + Factor,
Resultado ~ Exposicion,
coords = list(

x = c(Exposicion = 0, Muerte = 1, Resultado = 2, Factor = 1),
y = c(Exposicion = 0, Muerte = -0.5, Resultado = 0, Factor = 0.5)

)
)

ggdag(surv_dag) +
theme_dag() +
labs(title = "Sesgo del sobreviviente: solo observamos si Muerte = 0")

Exposicion

Factor

Muerte

Resultado

Sesgo del sobreviviente: solo observamos si Muerte = 0

Figura 4.3: Sesgo del sobreviviente

4.4.4 4. Sesgo de Berkson

Selección basada en hospitalización u otra condición común.

# Ejemplo: Enfermedades A y B causan hospitalización
set.seed(202)
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n_poblacion <- 50000

poblacion <- data.frame(
enfermedad_A = rbinom(n_poblacion, 1, 0.1), # 10% prevalencia
enfermedad_B = rbinom(n_poblacion, 1, 0.05) # 5% prevalencia

)

# Hospitalización si tiene alguna enfermedad
poblacion$hospitalizado <- as.numeric(
poblacion$enfermedad_A == 1 | poblacion$enfermedad_B == 1

)

# En la población
cat("Correlación en población:",

round(cor(poblacion$enfermedad_A, poblacion$enfermedad_B), 4), "\n")

Correlación en población: 0.0045

# Entre hospitalizados
hospitalizados <- poblacion[poblacion$hospitalizado == 1, ]
cat("Correlación entre hospitalizados:",

round(cor(hospitalizados$enfermedad_A, hospitalizados$enfermedad_B), 4), "\n")

Correlación entre hospitalizados: -0.9204

4.5 Estrategias de mitigación

4.5.1 1. Ponderación por probabilidad de selección

Si conocemos los factores de selección, podemos usar ponderación por inverso de la
probabilidad de selección (IPWS).

# Usando los datos de pérdida de seguimiento
datos_fup$prob_no_perdida <- 1 - prob_perdida
datos_fup$peso <- 1 / datos_fup$prob_no_perdida

# Análisis ponderado (solo en observados)
observados$peso <- datos_fup$peso[!is.na(datos_fup$resultado_observado)]
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efecto_ponderado <- weighted.mean(
observados$resultado_observado[observados$tratamiento == 1],
observados$peso[observados$tratamiento == 1]) -
weighted.mean(
observados$resultado_observado[observados$tratamiento == 0],
observados$peso[observados$tratamiento == 0])

cat("Efecto verdadero:", round(efecto_verdadero, 2), "\n")

Efecto verdadero: -8.99

cat("Efecto ponderado:", round(efecto_ponderado, 2), "\n")

Efecto ponderado: -9

4.5.2 2. Análisis de sensibilidad

Evaluar cómo diferentes asunciones sobre la selección afectan los resultados.

4.5.3 3. Diseño del estudio

• Minimizar pérdida de seguimiento
• Recopilar información sobre los que no participan
• Usar muestreo representativo

4.6 Identificación usando DAGs

library(dagitty)

full_dag <- dagitty("dag {
X -> Y
U -> X
U -> Y
X -> S
Y -> S

}")
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ggdag(full_dag) +
theme_dag() +
labs(title = "X: Exposición, Y: Resultado, S: Selección, U: Confusor")

S U

X

Y

X: Exposición, Y: Resultado, S: Selección, U: Confusor

Figura 4.4: DAG completo con mecanismo de selección

# Verificar si el efecto es identificable
# dado que condicionamos en S
full_dag <- dagitty("dag {
X -> Y
U -> X
U -> Y
X -> S
Y -> S

}")

# ¿Qué debemos ajustar si estamos condicionando en S?
cat("Conjuntos de ajuste cuando S está condicionado:\n")

Conjuntos de ajuste cuando S está condicionado:
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print(adjustmentSets(full_dag, exposure = "X", outcome = "Y",
type = "all"))

{ U }

4.7 Ejercicios

LIGHTBULB Ejercicio 1

Un estudio hospitalario encuentra que los pacientes con diabetes tienen menor riesgo
de enfermedad pulmonar. Dibuja un DAG y explica por qué esto podría ser sesgo de
Berkson.

LIGHTBULB Ejercicio 2

En un ensayo clínico, 30% de los pacientes en el grupo placebo abandonan vs. 10% en el
grupo tratamiento. Simula este escenario y cuantifica el sesgo resultante.

4.8 Resumen

• El sesgo de selección distorsiona la asociación entre exposición y resultado
• Desde la perspectiva de DAGs, surge al condicionar en un collider
• Incluye: sesgo de participación, pérdida de seguimiento, sobreviviente y Berkson
• La ponderación por probabilidad de selección puede corregir el sesgo
• El diseño cuidadoso del estudio es la mejor prevención

Referencias
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Part II

Parte II: Métodos Avanzados
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5 Variables Instrumentales

5.1 Objetivos de aprendizaje

Al finalizar este capítulo, serás capaz de:

• Definir una variable instrumental
• Verificar las condiciones de validez de un instrumento
• Aplicar estimación por mínimos cuadrados en dos etapas (2SLS)
• Interpretar efectos locales (LATE)

5.2 ¿Qué es una variable instrumental?

Una variable instrumental (IV) es una variable que afecta la exposición pero no tiene efecto
directo sobre el resultado, excepto a través de la exposición.

library(ggdag)
library(ggplot2)

iv_dag <- dagify(
Y ~ X + U,
X ~ Z + U,
coords = list(

x = c(Z = 0, X = 1, Y = 2, U = 1.5),
y = c(Z = 0, X = 0, Y = 0, U = 1)

),
labels = c(

Z = "Instrumento",
X = "Exposición",
Y = "Resultado",
U = "Confusor\n(no observado)"

)
)

ggdag(iv_dag, text = FALSE, use_labels = "label") +
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theme_dag() +
labs(title = "Variable Instrumental")

Confusor

(no observado)

Exposición ResultadoInstrumento

Variable Instrumental

Figura 5.1: DAG de variable instrumental

5.3 Condiciones de validez

Exclamation Las tres condiciones

1. Relevancia: Z está asociada con X
2. Independencia: Z es independiente de confusores no observados (U)
3. Exclusión: Z no afecta Y excepto a través de X

5.3.1 Verificación de relevancia

La condición de relevancia es la única verificable empíricamente.

# Simulación
set.seed(42)
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n <- 5000

# Confusor no observado
U <- rnorm(n)

# Instrumento (ej: distancia a hospital)
Z <- rnorm(n)

# Exposición influenciada por Z y U
X <- 0.5 * Z + 0.8 * U + rnorm(n, 0, 0.5)

# Resultado influenciado por X y U
Y <- 2 * X + 1.5 * U + rnorm(n, 0, 1)

datos_iv <- data.frame(Z, X, Y, U)

# Primera etapa: Z -> X
primera_etapa <- lm(X ~ Z, data = datos_iv)
summary(primera_etapa)

Call:
lm(formula = X ~ Z, data = datos_iv)

Residuals:
Min 1Q Median 3Q Max

-3.1449 -0.6224 0.0190 0.6381 3.5124

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.01585 0.01331 -1.191 0.234
Z 0.50925 0.01321 38.549 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.941 on 4998 degrees of freedom
Multiple R-squared: 0.2292, Adjusted R-squared: 0.229
F-statistic: 1486 on 1 and 4998 DF, p-value: < 2.2e-16

# Regla de oro: F > 10
cat("\nF-statistic:",

round(summary(primera_etapa)$fstatistic[1], 1), "\n")
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F-statistic: 1486

5.4 Estimación por 2SLS

El método de Mínimos Cuadrados en Dos Etapas (2SLS):

1. Primera etapa: Predecir X usando Z
2. Segunda etapa: Usar X predicho para estimar el efecto sobre Y

# Método manual (para entender)

# Etapa 1: Predecir X
etapa1 <- lm(X ~ Z, data = datos_iv)
datos_iv$X_pred <- predict(etapa1)

# Etapa 2: Usar X predicho
etapa2 <- lm(Y ~ X_pred, data = datos_iv)

cat("Efecto estimado por 2SLS:",
round(coef(etapa2)["X_pred"], 3), "\n")

Efecto estimado por 2SLS: 1.994

cat("Efecto verdadero: 2\n")

Efecto verdadero: 2

5.4.1 Usando el paquete ivreg

library(ivreg)

# Estimación correcta con errores estándar apropiados
modelo_iv <- ivreg(Y ~ X | Z, data = datos_iv)
summary(modelo_iv)
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Call:
ivreg(formula = Y ~ X | Z, data = datos_iv)

Residuals:
Min 1Q Median 3Q Max

-5.885405 -1.216900 -0.002617 1.223677 8.117727

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.01126 0.02559 -0.44 0.66
X 1.99359 0.04985 39.99 <2e-16 ***

Diagnostic tests:
df1 df2 statistic p-value

Weak instruments 1 4998 1486 <2e-16 ***
Wu-Hausman 1 4997 1148 <2e-16 ***
Sargan 0 NA NA NA
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.808 on 4998 degrees of freedom
Multiple R-Squared: 0.7412, Adjusted R-squared: 0.7411
Wald test: 1599 on 1 and 4998 DF, p-value: < 2.2e-16

5.5 Comparación con OLS

# OLS (sesgado por confusión)
modelo_ols <- lm(Y ~ X, data = datos_iv)

cat("Efecto OLS (sesgado):", round(coef(modelo_ols)["X"], 3), "\n")

Efecto OLS (sesgado): 3.042

cat("Efecto IV:", round(coef(modelo_iv)["X"], 3), "\n")

Efecto IV: 1.994
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cat("Efecto verdadero: 2\n")

Efecto verdadero: 2

5.6 Efecto Local (LATE)

El estimador IV identifica el Efecto Promedio del Tratamiento Local (LATE): el efecto
entre los “compliers” (quienes cumplen con la asignación del instrumento).

tipos <- data.frame(
Tipo = c("Compliers", "Always-takers", "Never-takers", "Defiers"),
Z0_X = c("X=0", "X=1", "X=0", "X=1"),
Z1_X = c("X=1", "X=1", "X=0", "X=0"),
Descripcion = c(

"Tratados solo si Z=1",
"Siempre tratados",
"Nunca tratados",
"Tratados solo si Z=0"

)
)

knitr::kable(tipos,
col.names = c("Tipo", "Si Z=0", "Si Z=1", "Descripción"),
caption = "Tipos de individuos según respuesta al instrumento")

Tabla 5.1: Tipos de individuos según respuesta al instrumento

Tipo Si Z=0 Si Z=1 Descripción

Compliers X=0 X=1 Tratados solo si Z=1
Always-takers X=1 X=1 Siempre tratados
Never-takers X=0 X=0 Nunca tratados
Defiers X=1 X=0 Tratados solo si Z=0

Figura 5.2: Tipos de individuos según respuesta al instrumento
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INFO Supuesto de monotonía

Generalmente asumimos que no hay “defiers” (monotonía). Esto significa que el
instrumento solo puede aumentar (o no cambiar) la probabilidad de tratamiento, nunca
disminuirla.

5.7 Ejemplos clásicos de instrumentos

Contexto Exposición Instrumento

Retornos a educación Años de educación Trimestre de nacimiento
Efecto de cesárea Tipo de parto Preferencia del médico
Efecto de transfusión Volumen transfundido Distancia al banco de sangre
Randomización con
incumplimiento

Tratamiento recibido Asignación aleatoria

5.8 Instrumentos débiles

Un instrumento débil tiene baja correlación con la exposición.

# Instrumento débil
set.seed(123)
Z_debil <- rnorm(n)
X_debil <- 0.05 * Z_debil + 0.8 * U + rnorm(n, 0, 0.5) # Coeficiente pequeño
Y_debil <- 2 * X_debil + 1.5 * U + rnorm(n, 0, 1)

# Primera etapa
etapa1_debil <- lm(X_debil ~ Z_debil)
cat("F-statistic (instrumento débil):",

round(summary(etapa1_debil)$fstatistic[1], 1), "\n")

F-statistic (instrumento débil): 6.7

# IV con instrumento débil
datos_debil <- data.frame(Z = Z_debil, X = X_debil, Y = Y_debil)
modelo_iv_debil <- ivreg(Y ~ X | Z, data = datos_debil)

cat("Efecto IV (instrumento débil):",
round(coef(modelo_iv_debil)["X"], 3), "\n")
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Efecto IV (instrumento débil): 1.459

cat("Error estándar:",
round(summary(modelo_iv_debil)$coefficients["X", "Std. Error"], 3), "\n")

Error estándar: 0.906

5.9 Diagnósticos para IV

5.9.1 Test de instrumentos débiles

# Test de Cragg-Donald / Kleibergen-Paap
summary(modelo_iv, diagnostics = TRUE)

Call:
ivreg(formula = Y ~ X | Z, data = datos_iv)

Residuals:
Min 1Q Median 3Q Max

-5.885405 -1.216900 -0.002617 1.223677 8.117727

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.01126 0.02559 -0.44 0.66
X 1.99359 0.04985 39.99 <2e-16 ***

Diagnostic tests:
df1 df2 statistic p-value

Weak instruments 1 4998 1486 <2e-16 ***
Wu-Hausman 1 4997 1148 <2e-16 ***
Sargan 0 NA NA NA
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.808 on 4998 degrees of freedom
Multiple R-Squared: 0.7412, Adjusted R-squared: 0.7411
Wald test: 1599 on 1 and 4998 DF, p-value: < 2.2e-16
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5.9.2 Test de sobreidentificación

Cuando tienes más de un instrumento, puedes probar la validez del conjunto.

# Múltiples instrumentos
Z2 <- Z + rnorm(n, 0, 0.5) # Segundo instrumento
datos_iv$Z2 <- Z2

modelo_iv_multi <- ivreg(Y ~ X | Z + Z2, data = datos_iv)
summary(modelo_iv_multi, diagnostics = TRUE)

Call:
ivreg(formula = Y ~ X | Z + Z2, data = datos_iv)

Residuals:
Min 1Q Median 3Q Max

-5.885158 -1.216807 -0.002639 1.223392 8.117374

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.01126 0.02559 -0.44 0.66
X 1.99370 0.04984 40.00 <2e-16 ***

Diagnostic tests:
df1 df2 statistic p-value

Weak instruments 2 4997 743.291 <2e-16 ***
Wu-Hausman 1 4997 1148.871 <2e-16 ***
Sargan 1 NA 0.012 0.913
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.808 on 4998 degrees of freedom
Multiple R-Squared: 0.7412, Adjusted R-squared: 0.7412
Wald test: 1600 on 1 and 4998 DF, p-value: < 2.2e-16
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5.10 Ejercicios

LIGHTBULB Ejercicio 1

Un economista quiere estimar el efecto de los años de educación sobre el salario. Propone
usar la distancia al colegio más cercano como instrumento.

1. Dibuja el DAG
2. Discute la plausibilidad de las tres condiciones
3. ¿Qué población representaría el LATE?

LIGHTBULB Ejercicio 2

Simula un escenario donde el instrumento viola la restricción de exclusión (Z afecta Y
directamente). ¿Qué sucede con la estimación IV?

5.11 Resumen

• Las variables instrumentales permiten identificar efectos causales con confusores no
observados

• Requieren tres condiciones: relevancia, independencia y exclusión
• Solo la relevancia es verificable empíricamente
• El método 2SLS es el más común para estimación
• El efecto identificado es el LATE (efecto entre compliers)
• Los instrumentos débiles producen estimaciones sesgadas e imprecisas

Referencias
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6 Causalidad y Supervivencia

6.1 Objetivos de aprendizaje

Al finalizar este capítulo, serás capaz de:

• Integrar conceptos causales con análisis de supervivencia
• Reconocer los sesgos específicos de datos de tiempo al evento
• Aplicar métodos de ponderación para estimación causal
• Manejar riesgos competitivos desde una perspectiva causal

6.2 Análisis de supervivencia: repaso

El análisis de supervivencia estudia el tiempo hasta que ocurre un evento de interés.

6.2.1 Conceptos fundamentales

library(survival)
library(ggplot2)

# Datos de ejemplo
data(lung)

# Modelo de Kaplan-Meier
km_fit <- survfit(Surv(time, status) ~ sex, data = lung)

# Visualización
plot(km_fit, col = c("blue", "red"),

xlab = "Tiempo (días)",
ylab = "Probabilidad de supervivencia",
main = "Curvas de Kaplan-Meier por sexo")

legend("topright", c("Hombre", "Mujer"), col = c("blue", "red"), lty = 1)
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6.3 Sesgos en supervivencia

6.3.1 Sesgo de tiempo inmortal

El sesgo de tiempo inmortal ocurre cuando hay un período durante el cual los sujetos
expuestos no pueden experimentar el evento.

library(ggdag)

it_dag <- dagify(
Y ~ X + T,
X ~ T,
coords = list(

x = c(T = 0, X = 1, Y = 2),
y = c(T = 0, X = 0.3, Y = 0)

),
labels = c(

T = "Tiempo\n(sobrevivir\nhasta exposición)",
X = "Exposición",
Y = "Muerte"

)

56



)

ggdag(it_dag, text = FALSE, use_labels = "label") +
theme_dag() +
labs(title = "El tiempo de supervivencia necesario para exponerse crea sesgo")

Tiempo
(sobrevivir

hasta exposición)

Exposición

Muerte

El tiempo de supervivencia necesario para exponerse crea sesgo

Figura 6.1: Sesgo de tiempo inmortal

6.3.2 Ejemplo de sesgo de tiempo inmortal

# Simulación
set.seed(303)
n <- 1000

# Tiempo hasta exposición (si ocurre)
tiempo_exposicion <- rexp(n, 0.1)

# Tiempo de supervivencia verdadero (independiente de exposición)
tiempo_muerte_base <- rexp(n, 0.05)
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# Asignación de exposición (solo si sobrevive hasta entonces)
datos_it <- data.frame(
id = 1:n,
tiempo_exposicion = tiempo_exposicion,
tiempo_muerte_base = tiempo_muerte_base

)

# ¿Se expuso? (solo si sobrevivió hasta el momento de exposición)
datos_it$expuesto <- datos_it$tiempo_muerte_base > datos_it$tiempo_exposicion

# Tiempo observado
datos_it$tiempo_observado <- pmin(datos_it$tiempo_muerte_base, 100)
datos_it$evento <- datos_it$tiempo_muerte_base <= 100

# Análisis INCORRECTO (ignora tiempo inmortal)
modelo_incorrecto <- coxph(Surv(tiempo_observado, evento) ~ expuesto,

data = datos_it)

cat("HR (análisis incorrecto, sesgo de tiempo inmortal):",
round(exp(coef(modelo_incorrecto)), 3), "\n")

HR (análisis incorrecto, sesgo de tiempo inmortal): 0.18

cat("HR verdadero: 1.0 (la exposición no tiene efecto)\n")

HR verdadero: 1.0 (la exposición no tiene efecto)

6.3.3 Corrección con tiempo dependiente

library(survival)

# Crear datos en formato largo (tiempo-dependiente)
datos_tv <- survSplit(Surv(tiempo_observado, evento) ~ .,

data = datos_it,
cut = datos_it$tiempo_exposicion[datos_it$expuesto],
episode = "periodo")

# Exposición como variable tiempo-dependiente
datos_tv$expuesto_tv <- with(datos_tv,
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expuesto & tstart >= tiempo_exposicion)

# Análisis CORRECTO
modelo_correcto <- coxph(Surv(tstart, tiempo_observado, evento) ~ expuesto_tv,

data = datos_tv)

cat("HR (análisis correcto):",
round(exp(coef(modelo_correcto)), 3), "\n")

HR (análisis correcto): 0.889

6.4 Ponderación en supervivencia (IPTW)

Podemos combinar propensity scores con análisis de supervivencia.

library(WeightIt)

# Datos con confusión
set.seed(404)
n <- 1500

datos_surv <- data.frame(
edad = rnorm(n, 60, 10),
comorbilidad = rbinom(n, 1, 0.3)

)

# Tratamiento influenciado por confusores
prob_trat <- plogis(-3 + 0.05 * datos_surv$edad + 1 * datos_surv$comorbilidad)
datos_surv$tratamiento <- rbinom(n, 1, prob_trat)

# Tiempo de supervivencia
hazard <- 0.01 * exp(0.03 * datos_surv$edad +

0.5 * datos_surv$comorbilidad -
0.4 * datos_surv$tratamiento) # Efecto protector

datos_surv$tiempo <- rexp(n, hazard)
datos_surv$tiempo <- pmin(datos_surv$tiempo, 100)
datos_surv$evento <- datos_surv$tiempo < 100

# Calcular pesos
pesos_surv <- weightit(tratamiento ~ edad + comorbilidad,
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data = datos_surv,
method = "ps",
estimand = "ATE")

# Modelo sin ponderación (sesgado)
modelo_crudo <- coxph(Surv(tiempo, evento) ~ tratamiento,

data = datos_surv)

# Modelo ponderado
modelo_ponderado <- coxph(Surv(tiempo, evento) ~ tratamiento,

data = datos_surv,
weights = pesos_surv$weights,
robust = TRUE)

cat("HR crudo:", round(exp(coef(modelo_crudo)), 3), "\n")

HR crudo: 0.863

cat("HR ponderado:", round(exp(coef(modelo_ponderado)), 3), "\n")

HR ponderado: 0.701

cat("HR verdadero: exp(-0.4) =", round(exp(-0.4), 3), "\n")

HR verdadero: exp(-0.4) = 0.67

6.5 Riesgos competitivos

Los riesgos competitivos ocurren cuando múltiples tipos de eventos pueden terminar el
seguimiento.

cr_dag <- dagify(
D1 ~ X + C,
D2 ~ X + C,
coords = list(

x = c(X = 0, C = 1, D1 = 2, D2 = 2),
y = c(X = 0, C = 1, D1 = 0.5, D2 = -0.5)

),
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labels = c(
X = "Exposición",
C = "Confusor",
D1 = "Muerte por\ncáncer",
D2 = "Muerte por\notra causa"

)
)

ggdag(cr_dag, text = FALSE, use_labels = "label") +
theme_dag() +
labs(title = "Riesgos competitivos")

Confusor

Muerte por

cáncer

Muerte por

otra causa

Exposición

Riesgos competitivos

Figura 6.2: Estructura de riesgos competitivos

6.5.1 Enfoque de subdistribución (Fine-Gray)

library(cmprsk)

# Simular riesgos competitivos
set.seed(505)
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n <- 800

datos_cr <- data.frame(
tratamiento = rbinom(n, 1, 0.5)

)

# Dos tipos de eventos
tiempo_cancer <- rexp(n, 0.03 - 0.01 * datos_cr$tratamiento)
tiempo_otro <- rexp(n, 0.02)

# Evento observado
datos_cr$tiempo <- pmin(tiempo_cancer, tiempo_otro, 50)
datos_cr$tipo_evento <- ifelse(datos_cr$tiempo >= 50, 0,

ifelse(tiempo_cancer < tiempo_otro, 1, 2))

# Modelo Fine-Gray para muerte por cáncer
fg_fit <- crr(datos_cr$tiempo,

datos_cr$tipo_evento,
datos_cr[, "tratamiento", drop = FALSE],
failcode = 1)

summary(fg_fit)

Competing Risks Regression

Call:
crr(ftime = datos_cr$tiempo, fstatus = datos_cr$tipo_evento,

cov1 = datos_cr[, "tratamiento", drop = FALSE], failcode = 1)

coef exp(coef) se(coef) z p-value
tratamiento -0.381 0.683 0.105 -3.63 0.00028

exp(coef) exp(-coef) 2.5% 97.5%
tratamiento 0.683 1.46 0.556 0.839

Num. cases = 800
Pseudo Log-likelihood = -2340
Pseudo likelihood ratio test = 13.2 on 1 df,
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6.5.2 Interpretación causal

Exclamation-Triangle Cuidado con la interpretación

El modelo de Fine-Gray estima el efecto sobre la incidencia acumulada, no sobre el
riesgo causa-específico. Esto tiene implicaciones para la interpretación causal porque
incluye implícitamente los efectos sobre el riesgo competitivo.

6.6 Análisis causa-específico

# Análisis causa-específico (censurar el otro evento)
datos_cs <- datos_cr
datos_cs$evento_cancer <- as.numeric(datos_cs$tipo_evento == 1)

modelo_cs <- coxph(Surv(tiempo, evento_cancer) ~ tratamiento,
data = datos_cs)

cat("HR causa-específico (muerte por cáncer):",
round(exp(coef(modelo_cs)), 3), "\n")

HR causa-específico (muerte por cáncer): 0.731

6.7 Ejercicios

LIGHTBULB Ejercicio 1

Un estudio encuentra que los pacientes que reciben un trasplante de riñón tienen mejor
supervivencia que los que permanecen en diálisis. Sin embargo, los pacientes deben
sobrevivir en lista de espera para recibir el trasplante.

1. Identifica el sesgo de tiempo inmortal
2. Propón un diseño analítico correcto

LIGHTBULB Ejercicio 2

En un estudio de cáncer, algunos pacientes mueren por causas cardiovasculares antes de
morir por cáncer.
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1. ¿Cómo afecta esto la estimación del efecto del tratamiento?
2. Compara las estimaciones Fine-Gray vs causa-específica

6.8 Resumen

• El análisis de supervivencia requiere consideraciones causales especiales
• El sesgo de tiempo inmortal surge cuando la exposición requiere sobrevivir
• La solución es usar exposición como variable tiempo-dependiente
• IPTW se puede aplicar a modelos de supervivencia
• Los riesgos competitivos requieren elegir entre estimandos alternativos
• Fine-Gray vs causa-específico tienen diferentes interpretaciones causales

Referencias
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7 Análisis de Sensibilidad

7.1 Objetivos de aprendizaje

Al finalizar este capítulo, serás capaz de:

• Entender la importancia del análisis de sensibilidad
• Calcular e interpretar el E-value
• Aplicar métodos de sensibilidad cuantitativos
• Comunicar la robustez de hallazgos causales

7.2 ¿Por qué análisis de sensibilidad?

En estudios observacionales, nunca podemos estar seguros de haber controlado todos los
confusores. El análisis de sensibilidad evalúa qué tan fuertes tendrían que ser los confusores no
medidos para explicar nuestros resultados.

library(ggdag)
library(ggplot2)

sens_dag <- dagify(
Y ~ X + C + U,
X ~ C + U,
coords = list(

x = c(X = 0, Y = 2, C = 1, U = 1),
y = c(X = 0, Y = 0, C = 0.7, U = -0.7)

),
labels = c(

X = "Exposición",
Y = "Resultado",
C = "Confusor\n(medido)",
U = "Confusor\n(no medido)"

)
)

65



ggdag(sens_dag, text = FALSE, use_labels = "label") +
theme_dag() +
labs(title = "U podría explicar la asociación observada")

Confusor

(medido)

Confusor

(no medido)

Exposición Resultado

U podría explicar la asociación observada

Figura 7.1: El confusor no medido (U) amenaza la validez

7.3 El E-value

El E-value (VanderWeele y Ding 2017) es la asociación mínima que un confusor no medido
tendría que tener con tanto la exposición como el resultado para explicar completamente la
asociación observada.

𝐸-value = 𝑅𝑅 + √𝑅𝑅 × (𝑅𝑅 − 1)

library(EValue)

# Ejemplo: RR observado = 2.5
rr_observado <- 2.5
ic_inferior <- 1.8 # Límite inferior del IC 95%
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# Calcular E-value
evalues <- evalues.RR(est = rr_observado, lo = ic_inferior)
evalues

point lower upper
RR 2.500000 1.8 NA
E-values 4.436492 3.0 NA

7.3.1 Interpretación del E-value

# Crear datos para el gráfico
rr_seq <- seq(1.1, 5, 0.1)
evalue_seq <- rr_seq + sqrt(rr_seq * (rr_seq - 1))

plot_data <- data.frame(
RR = rr_seq,
EValue = evalue_seq

)

# Valores del ejemplo anterior
rr_ejemplo <- 2.5
evalue_ejemplo <- 2.5 + sqrt(2.5 * (2.5 - 1))

ggplot(plot_data, aes(x = RR, y = EValue)) +
geom_line(size = 1.2, color = "steelblue") +
geom_vline(xintercept = rr_ejemplo, linetype = "dashed", color = "red") +
geom_hline(yintercept = evalue_ejemplo, linetype = "dashed", color = "red") +
annotate("point", x = rr_ejemplo, y = evalue_ejemplo, size = 4, color = "red") +
labs(x = "Riesgo Relativo observado",

y = "E-value",
title = "E-value en función del RR observado") +

theme_minimal()
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Figura 7.2: Interpretación gráfica del E-value

INFO Interpretación

Para un RR de 2.5, el E-value es aproximadamente 4.4. Esto significa que un confusor no
medido tendría que tener un RR de al menos 4.4 con tanto la exposición como el resultado
para explicar completamente la asociación observada.

7.4 Análisis de sensibilidad con sensemakr

El paquete sensemakr (Cinelli y Hazlett 2020) proporciona herramientas más sofisticadas.

library(sensemakr)

# Ejemplo con datos de discriminación laboral
data("darfur")

# Modelo ajustado
modelo <- lm(peacefactor ~ directlyharmed + age + farmer_dar +

herder_dar + pastvoted + female, data = darfur)
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# Análisis de sensibilidad
sens <- sensemakr(model = modelo,

treatment = "directlyharmed",
benchmark_covariates = "female",
kd = 1:3,
q = 1)

summary(sens)

Sensitivity Analysis to Unobserved Confounding

Model Formula: peacefactor ~ directlyharmed + age + farmer_dar + herder_dar +
pastvoted + female

Null hypothesis: q = 1 and reduce = TRUE
-- This means we are considering biases that reduce the absolute value of the current estimate.
-- The null hypothesis deemed problematic is H0:tau = 0

Unadjusted Estimates of 'directlyharmed':
Coef. estimate: 0.0489
Standard Error: 0.0184
t-value (H0:tau = 0): 2.6648

Sensitivity Statistics:
Partial R2 of treatment with outcome: 0.0056
Robustness Value, q = 1: 0.0721
Robustness Value, q = 1, alpha = 0.05: 0.0195

Verbal interpretation of sensitivity statistics:

-- Partial R2 of the treatment with the outcome: an extreme confounder (orthogonal to the covariates) that explains 100% of the residual variance of the outcome, would need to explain at least 0.56% of the residual variance of the treatment to fully account for the observed estimated effect.

-- Robustness Value, q = 1: unobserved confounders (orthogonal to the covariates) that explain more than 7.21% of the residual variance of both the treatment and the outcome are strong enough to bring the point estimate to 0 (a bias of 100% of the original estimate). Conversely, unobserved confounders that do not explain more than 7.21% of the residual variance of both the treatment and the outcome are not strong enough to bring the point estimate to 0.

-- Robustness Value, q = 1, alpha = 0.05: unobserved confounders (orthogonal to the covariates) that explain more than 1.95% of the residual variance of both the treatment and the outcome are strong enough to bring the estimate to a range where it is no longer 'statistically different' from 0 (a bias of 100% of the original estimate), at the significance level of alpha = 0.05. Conversely, unobserved confounders that do not explain more than 1.95% of the residual variance of both the treatment and the outcome are not strong enough to bring the estimate to a range where it is no longer 'statistically different' from 0, at the significance level of alpha = 0.05.

Bounds on omitted variable bias:

--The table below shows the maximum strength of unobserved confounders with association with the treatment and the outcome bounded by a multiple of the observed explanatory power of the chosen benchmark covariate(s).

Bound Label R2dz.x R2yz.dx Treatment Adjusted Estimate Adjusted Se
1x female 0.0027 0.1314 directlyharmed 0.0366 0.0171
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2x female 0.0054 0.2627 directlyharmed 0.0243 0.0158
3x female 0.0081 0.3941 directlyharmed 0.0119 0.0144

Adjusted T Adjusted Lower CI Adjusted Upper CI
2.1357 0.0030 0.0703
1.5341 -0.0068 0.0553
0.8273 -0.0163 0.0401

7.4.1 Visualización de contornos

plot(sens)
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Figura 7.3: Contornos de sensibilidad

7.4.2 Robustness Value (RV)

# El Robustness Value indica qué tan fuerte tendría que ser
# un confusor para reducir el efecto a cero

cat("Robustness Value (q=1):",
round(sens$bounds$r2yz.dx[1], 3), "\n")

70



Robustness Value (q=1): 0.131

cat("\nInterpretación: Un confusor tendría que explicar al menos",
round(sens$bounds$r2yz.dx[1] * 100, 1), "% de la varianza\n",
"residual tanto de X como de Y para eliminar el efecto.\n")

Interpretación: Un confusor tendría que explicar al menos 13.1 % de la varianza
residual tanto de X como de Y para eliminar el efecto.

7.5 Fórmula de sesgo de confusión

La fórmula de sesgo permite calcular cuánto cambiaría la estimación dado un confusor
específico:

Sesgo = (RR𝑈𝑌 − 1) × (RR𝑈𝑋 − 1)
RR𝑈𝑌 + (RR𝑈𝑋 − 1) × 𝑃(𝑈)

# Función para calcular sesgo
calcular_sesgo <- function(rr_uy, rr_ux, p_u = 0.5) {
# Fórmula simplificada
bias <- (rr_uy - 1) * (rr_ux - 1) /

(rr_uy + (rr_ux - 1) * p_u)
return(bias)

}

# Ejemplo: ¿Cuánto sesgo introduciría un confusor con RR=1.5
# con exposición y resultado?
sesgo <- calcular_sesgo(rr_uy = 1.5, rr_ux = 1.5)
cat("Sesgo aproximado:", round(sesgo, 3), "\n")

Sesgo aproximado: 0.143

7.6 Análisis de sensibilidad para IPTW
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# Simulación con confusor no medido
set.seed(606)
n <- 2000

# Confusor medido
C_medido <- rnorm(n)

# Confusor NO medido
U <- rnorm(n)

# Exposición
prob_X <- plogis(-1 + 0.5 * C_medido + 0.8 * U)
X <- rbinom(n, 1, prob_X)

# Resultado
Y <- 2 + 3 * X + 1.5 * C_medido + 2 * U + rnorm(n)

datos_sens <- data.frame(C_medido, U, X, Y)

# Efecto verdadero (controlando U)
efecto_verdadero <- coef(lm(Y ~ X + C_medido + U, data = datos_sens))["X"]

# Efecto sin U (sesgado)
efecto_sesgado <- coef(lm(Y ~ X + C_medido, data = datos_sens))["X"]

# IPTW sin U
library(WeightIt)
pesos <- weightit(X ~ C_medido, data = datos_sens, method = "ps")
efecto_iptw <- coef(lm(Y ~ X, data = datos_sens, weights = pesos$weights))["X"]

cat("Efecto verdadero (con U):", round(efecto_verdadero, 3), "\n")

Efecto verdadero (con U): 2.958

cat("Efecto sin U (OLS):", round(efecto_sesgado, 3), "\n")

Efecto sin U (OLS): 4.468

cat("Efecto IPTW (sin U):", round(efecto_iptw, 3), "\n")

Efecto IPTW (sin U): 4.432
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cat("Sesgo por U:", round(efecto_iptw - efecto_verdadero, 3), "\n")

Sesgo por U: 1.473

7.7 Comunicando resultados de sensibilidad

7.7.1 Buenas prácticas

1. Reportar E-values para el efecto y su intervalo de confianza
2. Comparar con confusores conocidos: ¿Es plausible un confusor tan fuerte?
3. Usar benchmarks: Comparar con la fuerza de confusores medidos
4. Ser transparente sobre las limitaciones

7.7.2 Ejemplo de reporte

# Supongamos un RR observado
rr_obs <- 1.8
rr_lo <- 1.3
rr_hi <- 2.4

# E-values
ev <- evalues.RR(est = rr_obs, lo = rr_lo, hi = rr_hi)

cat("REPORTE DE SENSIBILIDAD\n")

REPORTE DE SENSIBILIDAD

cat("=======================\n\n")

=======================

cat("RR observado: ", rr_obs, " (IC 95%: ", rr_lo, "-", rr_hi, ")\n\n", sep = "")

RR observado: 1.8 (IC 95%: 1.3-2.4)
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cat("E-value para el estimado puntual:", round(ev["E-values", "point"], 2), "\n")

E-value para el estimado puntual: 3

cat("E-value para el límite inferior del IC:", round(ev["E-values", "lower"], 2), "\n\n")

E-value para el límite inferior del IC: 1.92

cat("Interpretación: Para explicar completamente la asociación observada,\n")

Interpretación: Para explicar completamente la asociación observada,

cat("un confusor no medido tendría que estar asociado con tanto la\n")

un confusor no medido tendría que estar asociado con tanto la

cat("exposición como el resultado con un RR de al menos",
round(ev["E-values", "point"], 2), ".\n\n")

exposición como el resultado con un RR de al menos 3 .

cat("Para mover el IC inferior a 1.0, la asociación del confusor\n")

Para mover el IC inferior a 1.0, la asociación del confusor

cat("tendría que ser de al menos RR =", round(ev["E-values", "lower"], 2), ".\n")

tendría que ser de al menos RR = 1.92 .

7.8 Ejercicios
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LIGHTBULB Ejercicio 1

Un estudio observacional encuentra que el consumo de vegetales está asociado con menor
mortalidad (HR = 0.75, IC 95%: 0.65-0.85).

1. Calcula el E-value
2. ¿Qué tan fuerte tendría que ser un confusor para explicar esto?
3. Considera confusores plausibles (nivel socioeconómico, acceso a salud)

LIGHTBULB Ejercicio 2

Usando sensemakr, realiza un análisis de sensibilidad completo para un modelo de tu
elección. Interpreta los resultados y determina si el efecto es robusto.

7.9 Resumen

• El análisis de sensibilidad evalúa la robustez de hallazgos causales
• El E-value cuantifica la fuerza mínima de un confusor para explicar el efecto
• sensemakr proporciona visualizaciones y métricas avanzadas
• Siempre comparar con la fuerza de confusores conocidos
• Reportar transparentemente las limitaciones del estudio

Referencias
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8 Análisis de Mediación

8.1 Objetivos de aprendizaje

Al finalizar este capítulo, serás capaz de:

• Distinguir entre efectos directos e indirectos
• Definir efectos de mediación causal (NDE, NIE)
• Identificar las asunciones para mediación
• Aplicar el paquete mediation en R

8.2 ¿Qué es la mediación?

La mediación examina cómo o por qué una exposición afecta un resultado. El efecto puede
ser:

• Directo: X → Y
• Indirecto: X → M → Y (a través de un mediador)

library(ggdag)
library(ggplot2)

med_dag <- dagify(
M ~ X,
Y ~ X + M,
coords = list(

x = c(X = 0, M = 1, Y = 2),
y = c(X = 0, M = 0.5, Y = 0)

),
labels = c(

X = "Exposición",
M = "Mediador",
Y = "Resultado"

)
)
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ggdag(med_dag, text = FALSE, use_labels = "label") +
theme_dag() +
labs(title = "X afecta Y directamente y a través de M")

Mediador

Exposición Resultado

X afecta Y directamente y a través de M

Figura 8.1: Diagrama de mediación simple

8.3 Definiciones causales

8.3.1 Efectos naturales (NDE y NIE)

• Efecto Directo Natural (NDE): Efecto de X sobre Y manteniendo M en el nivel que
habría tenido sin la exposición

• Efecto Indirecto Natural (NIE): Efecto de cambiar M desde el nivel sin exposición al
nivel con exposición, manteniendo X fijo

Efecto Total = NDE + NIE
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library(ggplot2)

# Datos para visualización
efectos <- data.frame(
Tipo = c("Directo (NDE)", "Indirecto (NIE)"),
Valor = c(0.6, 0.4),
ymin = 0,
ymax = c(0.6, 1.0)

)

ggplot(efectos, aes(x = 1, y = Valor, fill = Tipo)) +
geom_col(position = "stack", width = 0.5) +
coord_flip() +
labs(y = "Proporción del efecto total",

x = "",
title = "Descomposición del efecto total") +

theme_minimal() +
theme(axis.text.y = element_blank(),

axis.ticks.y = element_blank())

0.00 0.25 0.50 0.75 1.00
Proporción del efecto total

Tipo

Directo (NDE)

Indirecto (NIE)

Descomposición del efecto total

Figura 8.2: Descomposición del efecto total
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8.4 Asunciones para identificación

Exclamation Cuatro asunciones de no confusión

1. No hay confusión de X → Y
2. No hay confusión de M → Y
3. No hay confusión de X → M
4. No hay confusor de M → Y afectado por X

La cuarta asunción es frecuentemente violada y difícil de verificar.

full_med_dag <- dagify(
M ~ X + C1,
Y ~ X + M + C2,
X ~ C1 + C2,
coords = list(

x = c(X = 0, M = 1, Y = 2, C1 = 0.5, C2 = 1),
y = c(X = 0, M = 0.5, Y = 0, C1 = 1, C2 = -0.8)

),
labels = c(

X = "Exposición",
M = "Mediador",
Y = "Resultado",
C1 = "Confusor\nX-M",
C2 = "Confusor\nX-Y y M-Y"

)
)

ggdag(full_med_dag, text = FALSE, use_labels = "label") +
theme_dag()
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Confusor
X−M

Confusor

X−Y y M−Y

Mediador

Exposición Resultado

Figura 8.3: Escenario con todas las asunciones satisfechas

8.5 Método de Baron-Kenny (tradicional)

El enfoque clásico usa tres regresiones:

# Simular datos
set.seed(707)
n <- 1000

X <- rnorm(n) # Exposición
M <- 0.5 * X + rnorm(n, 0, 0.5) # Mediador
Y <- 0.3 * X + 0.6 * M + rnorm(n, 0, 0.5) # Resultado

datos_med <- data.frame(X, M, Y)

# Paso 1: Efecto total (X -> Y)
modelo1 <- lm(Y ~ X, data = datos_med)
cat("Efecto total:", round(coef(modelo1)["X"], 3), "\n")

Efecto total: 0.603
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# Paso 2: Efecto de X sobre M
modelo2 <- lm(M ~ X, data = datos_med)
cat("Efecto X -> M:", round(coef(modelo2)["X"], 3), "\n")

Efecto X -> M: 0.504

# Paso 3: Efecto de X y M sobre Y
modelo3 <- lm(Y ~ X + M, data = datos_med)
cat("Efecto directo (X -> Y|M):", round(coef(modelo3)["X"], 3), "\n")

Efecto directo (X -> Y|M): 0.306

cat("Efecto M -> Y:", round(coef(modelo3)["M"], 3), "\n")

Efecto M -> Y: 0.59

# Efecto indirecto (producto de coeficientes)
efecto_indirecto <- coef(modelo2)["X"] * coef(modelo3)["M"]
cat("\nEfecto indirecto (a × b):", round(efecto_indirecto, 3), "\n")

Efecto indirecto (a × b): 0.297

8.5.1 Limitaciones del método tradicional

1. No tiene interpretación causal clara
2. Asume linearidad
3. No funciona bien con mediadores o resultados binarios
4. Intervalos de confianza problemáticos

8.6 Método de mediación causal

El paquete mediation implementa el enfoque de efectos naturales:
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library(mediation)

# Modelo para el mediador
modelo_mediador <- lm(M ~ X, data = datos_med)

# Modelo para el resultado
modelo_resultado <- lm(Y ~ X + M, data = datos_med)

# Análisis de mediación
med_out <- mediate(modelo_mediador, modelo_resultado,

treat = "X",
mediator = "M",
boot = TRUE,
sims = 500)

summary(med_out)

Causal Mediation Analysis

Nonparametric Bootstrap Confidence Intervals with the Percentile Method

Estimate 95% CI Lower 95% CI Upper p-value
ACME 0.29717 0.26265 0.33218 < 2.2e-16 ***
ADE 0.30631 0.26522 0.35520 < 2.2e-16 ***
Total Effect 0.60348 0.56832 0.64330 < 2.2e-16 ***
Prop. Mediated 0.49243 0.42951 0.54926 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Sample Size Used: 1000

Simulations: 500

8.6.1 Interpretación de resultados

cat("=== INTERPRETACIÓN ===\n\n")

=== INTERPRETACIÓN ===
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cat("ACME (Average Causal Mediation Effect):",
round(med_out$d0, 3), "\n")

ACME (Average Causal Mediation Effect): 0.297

cat(" → Efecto que pasa a través del mediador\n\n")

→ Efecto que pasa a través del mediador

cat("ADE (Average Direct Effect):",
round(med_out$z0, 3), "\n")

ADE (Average Direct Effect): 0.306

cat(" → Efecto que NO pasa por el mediador\n\n")

→ Efecto que NO pasa por el mediador

cat("Proporción mediada:",
round(med_out$n0, 2), "\n")

Proporción mediada: 0.49

cat(" → ", round(med_out$n0 * 100), "% del efecto total es mediado\n", sep = "")

→ 49% del efecto total es mediado

8.7 Mediación con resultados binarios

# Datos con resultado binario
set.seed(808)
n <- 2000

X <- rbinom(n, 1, 0.5) # Exposición binaria
M <- plogis(-1 + 1.5 * X) + rnorm(n, 0, 0.2) # Mediador continuo
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M <- pmax(0, pmin(1, M)) # Limitar entre 0 y 1
Y <- rbinom(n, 1, plogis(-1.5 + 0.5 * X + 2 * M)) # Resultado binario

datos_bin <- data.frame(X, M, Y)

# Modelos
mod_med_bin <- lm(M ~ X, data = datos_bin)
mod_out_bin <- glm(Y ~ X + M, data = datos_bin, family = binomial)

# Mediación
med_bin <- mediate(mod_med_bin, mod_out_bin,

treat = "X",
mediator = "M",
boot = TRUE,
sims = 200)

summary(med_bin)

Causal Mediation Analysis

Nonparametric Bootstrap Confidence Intervals with the Percentile Method

Estimate 95% CI Lower 95% CI Upper p-value
ACME (control) 0.155226 0.116670 0.195889 < 2.2e-16 ***
ACME (treated) 0.165200 0.128907 0.204012 < 2.2e-16 ***
ADE (control) 0.082277 0.029158 0.136139 < 2.2e-16 ***
ADE (treated) 0.092251 0.034054 0.149166 < 2.2e-16 ***
Total Effect 0.247478 0.208113 0.294190 < 2.2e-16 ***
Prop. Mediated (control) 0.627234 0.439330 0.840683 < 2.2e-16 ***
Prop. Mediated (treated) 0.667537 0.493558 0.865155 < 2.2e-16 ***
ACME (average) 0.160213 0.123372 0.200685 < 2.2e-16 ***
ADE (average) 0.087264 0.031540 0.142628 < 2.2e-16 ***
Prop. Mediated (average) 0.647385 0.462488 0.852919 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Sample Size Used: 2000

Simulations: 200
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8.8 Análisis de sensibilidad para mediación

La violación de las asunciones (especialmente la 4ª) puede sesgar las estimaciones. El paquete
mediation incluye análisis de sensibilidad:

# Análisis de sensibilidad
sens_med <- medsens(med_out, rho.by = 0.1, sims = 200)
summary(sens_med)

Mediation Sensitivity Analysis for Average Causal Mediation Effect

Sensitivity Region

Rho ACME 95% CI Lower 95% CI Upper R^2_M*R^2_Y* R^2_M~R^2_Y~
[1,] 0.5 -0.0041 -0.0365 0.0283 0.25 0.0446

Rho at which ACME = 0: 0.5
R^2_M*R^2_Y* at which ACME = 0: 0.25
R^2_M~R^2_Y~ at which ACME = 0: 0.0446

plot(sens_med, main = "Sensibilidad del ACME")
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Figura 8.4: Sensibilidad del efecto indirecto

8.9 Múltiples mediadores

Cuando hay varios mediadores, el análisis se complica:

multi_med_dag <- dagify(
M1 ~ X,
M2 ~ X,
Y ~ X + M1 + M2,
coords = list(

x = c(X = 0, M1 = 1, M2 = 1, Y = 2),
y = c(X = 0, M1 = 0.5, M2 = -0.5, Y = 0)

)
)

ggdag(multi_med_dag) +
theme_dag() +
labs(title = "X → Y con dos mediadores M1 y M2")
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M1

M2

X Y

X −> Y con dos mediadores M1 y M2

Figura 8.5: Múltiples mediadores

Exclamation-Triangle Complicación

Con múltiples mediadores que pueden afectarse entre sí, los efectos indirectos específicos
para cada mediador generalmente no están identificados sin asunciones adicionales.

8.10 Ejercicios

LIGHTBULB Ejercicio 1

Un programa educativo (X) mejora las calificaciones (Y). Se hipotetiza que el efecto es
mediado por horas de estudio (M).

1. Simula datos bajo este escenario
2. Estima NDE y NIE
3. Calcula la proporción mediada
4. Realiza análisis de sensibilidad
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LIGHTBULB Ejercicio 2

Considera el caso donde el mediador M tiene un confusor U que también está afectado
por X (violación de la 4ª asunción). Simula este escenario y muestra cómo sesga las
estimaciones.

8.11 Resumen

• La mediación descompone el efecto total en directo e indirecto
• NDE y NIE tienen interpretación causal clara
• Se requieren cuatro asunciones de no confusión
• La 4ª asunción (no confusor M→Y afectado por X) es crítica
• El paquete mediation implementa estos métodos
• Siempre realizar análisis de sensibilidad

Referencias
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Part III

Parte III: Aplicación
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9 Aplicación Integradora

9.1 Objetivos de aprendizaje

Al finalizar este capítulo, serás capaz de:

• Integrar todos los métodos del curso en un análisis completo
• Seguir un flujo de trabajo reproducible para inferencia causal
• Tomar decisiones metodológicas fundamentadas
• Comunicar resultados con transparencia

9.2 Caso de estudio: Efecto del ejercicio en la salud cardiovascular

9.2.1 Pregunta de investigación

¿Cuál es el efecto causal del ejercicio regular en el riesgo de eventos cardiovasculares
en adultos mayores?

9.2.2 Datos

Utilizaremos datos simulados que imitan un estudio de cohorte observacional.

set.seed(2026)
n <- 3000

# Generar datos
datos <- data.frame(
id = 1:n,
edad = round(rnorm(n, 65, 8)),
sexo = rbinom(n, 1, 0.48), # 1 = mujer
imc = round(rnorm(n, 27, 4), 1),
diabetes = rbinom(n, 1, 0.2),
hipertension = rbinom(n, 1, 0.4),
educacion = sample(1:4, n, replace = TRUE,
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prob = c(0.2, 0.3, 0.35, 0.15)),
ingreso = round(rlnorm(n, log(50000), 0.5))

)

# Exposición: ejercicio regular (confundido)
datos$prob_ejercicio <- plogis(
-2 +
-0.02 * datos$edad +
0.3 * datos$sexo +
-0.05 * datos$imc +
-0.5 * datos$diabetes +
0.3 * datos$educacion +
0.0001 * datos$ingreso

)
datos$ejercicio <- rbinom(n, 1, datos$prob_ejercicio)

# Mediador potencial: presión arterial
datos$presion <- round(
120 +
0.3 * datos$edad +
-3 * datos$sexo +
0.5 * datos$imc +
15 * datos$hipertension +
-8 * datos$ejercicio + # Efecto del ejercicio
rnorm(n, 0, 10)

)

# Resultado: evento cardiovascular (0/1)
datos$hazard <- exp(
-5 +
0.04 * datos$edad +
-0.3 * datos$sexo +
0.02 * datos$imc +
0.4 * datos$diabetes +
0.5 * datos$hipertension +
0.02 * datos$presion +
-0.5 * datos$ejercicio # Efecto causal verdadero

)
datos$evento <- rbinom(n, 1, pmin(datos$hazard, 0.8))

# Limpiar
datos$prob_ejercicio <- NULL

91



datos$hazard <- NULL

9.3 Paso 1: Especificación del DAG

library(ggdag)
library(ggplot2)

app_dag <- dagify(
Ejercicio ~ Edad + Sexo + IMC + Diabetes + Educacion + Ingreso,
Presion ~ Edad + Sexo + IMC + Hipertension + Ejercicio,
Evento ~ Edad + Sexo + IMC + Diabetes + Hipertension + Presion + Ejercicio,
exposure = "Ejercicio",
outcome = "Evento",
labels = c(

Ejercicio = "Ejercicio",
Evento = "Evento CV",
Presion = "Presión",
Edad = "Edad",
Sexo = "Sexo",
IMC = "IMC",
Diabetes = "Diabetes",
Hipertension = "HTA",
Educacion = "Educación",
Ingreso = "Ingreso"

)
)

ggdag_status(app_dag, text = FALSE, use_labels = "label") +
theme_dag() +
labs(title = "DAG: Efecto del ejercicio en eventos cardiovasculares")
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DAG: Efecto del ejercicio en eventos cardiovasculares

Figura 9.1: DAG del estudio

9.3.1 Identificación de confusores

library(dagitty)

g <- dagitty("dag {
Ejercicio -> Evento
Ejercicio -> Presion -> Evento
Edad -> Ejercicio
Edad -> Presion
Edad -> Evento
Sexo -> Ejercicio
Sexo -> Presion
Sexo -> Evento
IMC -> Ejercicio
IMC -> Presion
IMC -> Evento
Diabetes -> Ejercicio
Diabetes -> Evento
Hipertension -> Presion
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Hipertension -> Evento
Educacion -> Ejercicio
Ingreso -> Ejercicio

}")

# Conjunto de ajuste mínimo
cat("Conjunto mínimo de ajuste:\n")

Conjunto mínimo de ajuste:

print(adjustmentSets(g, exposure = "Ejercicio", outcome = "Evento", type = "minimal"))

{ Diabetes, Edad, IMC, Sexo }

9.4 Paso 2: Análisis descriptivo

library(tableone)

vars <- c("edad", "sexo", "imc", "diabetes", "hipertension",
"educacion", "ingreso", "presion", "evento")

tabla1 <- CreateTableOne(vars = vars,
strata = "ejercicio",
data = datos,
factorVars = c("sexo", "diabetes", "hipertension"))

print(tabla1, smd = TRUE)

Stratified by ejercicio
0 1 p test

n 966 2034
edad (mean (SD)) 65.35 (7.94) 64.71 (7.86) 0.036
sexo = 1 (%) 434 (44.9) 1015 (49.9) 0.012
imc (mean (SD)) 27.25 (4.24) 26.95 (3.99) 0.058
diabetes = 1 (%) 224 (23.2) 394 (19.4) 0.018
hipertension = 1 (%) 393 (40.7) 825 (40.6) 0.981
educacion (mean (SD)) 2.35 (0.95) 2.51 (0.99) <0.001
ingreso (mean (SD)) 35583.83 (12728.30) 66758.71 (30260.72) <0.001
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presion (mean (SD)) 158.15 (13.03) 149.92 (13.20) <0.001
evento (mean (SD)) 0.80 (0.40) 0.79 (0.41) 0.464

Stratified by ejercicio
SMD

n
edad (mean (SD)) 0.082
sexo = 1 (%) 0.100
imc (mean (SD)) 0.073
diabetes = 1 (%) 0.093
hipertension = 1 (%) 0.002
educacion (mean (SD)) 0.167
ingreso (mean (SD)) 1.343
presion (mean (SD)) 0.627
evento (mean (SD)) 0.029

INFO Desequilibrio observado

Las diferencias estandarizadas (SMD) mayores a 0.1 indican desequilibrio entre grupos.
Esto confirma la necesidad de ajuste.

9.5 Paso 3: Estimación por múltiples métodos

9.5.1 3.1 Análisis crudo

# Riesgo relativo crudo
tabla_cruda <- table(datos$ejercicio, datos$evento)
rr_crudo <- (tabla_cruda[2,2] / sum(tabla_cruda[2,])) /

(tabla_cruda[1,2] / sum(tabla_cruda[1,]))

cat("RR crudo:", round(rr_crudo, 3), "\n")

RR crudo: 0.985

# Regresión logística cruda
modelo_crudo <- glm(evento ~ ejercicio, data = datos, family = binomial)
cat("OR crudo:", round(exp(coef(modelo_crudo)["ejercicio"]), 3), "\n")

OR crudo: 0.931
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9.5.2 3.2 Regresión multivariable

# Sin incluir la presión (mediador)
modelo_ajustado <- glm(evento ~ ejercicio + edad + sexo + imc +

diabetes + hipertension,
data = datos, family = binomial)

cat("OR ajustado:", round(exp(coef(modelo_ajustado)["ejercicio"]), 3), "\n")

OR ajustado: 0.943

cat("IC 95%:", round(exp(confint(modelo_ajustado)["ejercicio",]), 3), "\n")

IC 95%: 0.778 1.141

9.5.3 3.3 Propensity Score Matching

library(MatchIt)

# Matching
match_out <- matchit(ejercicio ~ edad + sexo + imc + diabetes +

hipertension + educacion + ingreso,
data = datos,
method = "nearest",
ratio = 1,
caliper = 0.2)

summary(match_out)

Call:
matchit(formula = ejercicio ~ edad + sexo + imc + diabetes +

hipertension + educacion + ingreso, data = datos, method = "nearest",
caliper = 0.2, ratio = 1)

Summary of Balance for All Data:
Means Treated Means Control Std. Mean Diff. Var. Ratio eCDF Mean

distance 0.7973 0.4268 1.6629 0.9103 0.3667
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edad 64.7055 65.3509 -0.0821 0.9814 0.0130
sexo 0.4990 0.4493 0.0995 . 0.0497
imc 26.9477 27.2499 -0.0757 0.8878 0.0146
diabetes 0.1937 0.2319 -0.0966 . 0.0382
hipertension 0.4056 0.4068 -0.0025 . 0.0012
educacion 2.5108 2.3489 0.1638 1.0869 0.0405
ingreso 66758.7104 35583.8323 1.0302 5.6522 0.3566

eCDF Max
distance 0.5757
edad 0.0475
sexo 0.0497
imc 0.0583
diabetes 0.0382
hipertension 0.0012
educacion 0.0705
ingreso 0.5589

Summary of Balance for Matched Data:
Means Treated Means Control Std. Mean Diff. Var. Ratio eCDF Mean

distance 0.5686 0.5281 0.1820 1.1763 0.0414
edad 64.6148 64.8385 -0.0285 0.9660 0.0066
sexo 0.4711 0.4741 -0.0059 . 0.0030
imc 27.2495 26.9727 0.0693 0.8596 0.0175
diabetes 0.1941 0.2059 -0.0300 . 0.0119
hipertension 0.4089 0.3867 0.0453 . 0.0222
educacion 2.3807 2.3985 -0.0180 1.1115 0.0141
ingreso 45913.1659 40680.6222 0.1729 5.7910 0.0417

eCDF Max Std. Pair Dist.
distance 0.1052 0.1822
edad 0.0252 1.0803
sexo 0.0030 1.0015
imc 0.0667 1.1285
diabetes 0.0119 0.8472
hipertension 0.0222 0.9323
educacion 0.0326 1.0582
ingreso 0.0993 0.2713

Sample Sizes:
Control Treated

All 966 2034
Matched 675 675
Unmatched 291 1359
Discarded 0 0
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# Datos emparejados
datos_match <- match.data(match_out)

# Efecto en datos emparejados
modelo_match <- glm(evento ~ ejercicio,

data = datos_match,
family = binomial,
weights = weights)

cat("\nOR matching:", round(exp(coef(modelo_match)["ejercicio"]), 3), "\n")

OR matching: 0.928

9.5.4 3.4 IPTW

library(WeightIt)

# Calcular pesos
pesos <- weightit(ejercicio ~ edad + sexo + imc + diabetes +

hipertension + educacion + ingreso,
data = datos,
method = "ps",
estimand = "ATE")

# Diagnóstico de balance
library(cobalt)
bal.tab(pesos, stats = c("m", "v"), thresholds = c(m = 0.1))

Balance Measures
Type Diff.Adj M.Threshold V.Ratio.Adj

prop.score Distance 0.0921 Balanced, <0.1 0.9748
edad Contin. 0.0116 Balanced, <0.1 1.1850
sexo Binary -0.0487 Balanced, <0.1 .
imc Contin. 0.0993 Balanced, <0.1 0.9699
diabetes Binary 0.0301 Balanced, <0.1 .
hipertension Binary -0.0651 Balanced, <0.1 .
educacion Contin. 0.1262 Not Balanced, >0.1 0.9871
ingreso Contin. 0.2007 Not Balanced, >0.1 1.7075
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Balance tally for mean differences
count

Balanced, <0.1 6
Not Balanced, >0.1 2

Variable with the greatest mean difference
Variable Diff.Adj M.Threshold
ingreso 0.2007 Not Balanced, >0.1

Effective sample sizes
Control Treated

Unadjusted 966. 2034.
Adjusted 79.57 1495.94

# Modelo ponderado
modelo_iptw <- glm(evento ~ ejercicio,

data = datos,
family = binomial,
weights = pesos$weights)

# Errores robustos
library(sandwich)
se_robust <- sqrt(vcovHC(modelo_iptw, type = "HC1")["ejercicio", "ejercicio"])
or_iptw <- exp(coef(modelo_iptw)["ejercicio"])
ic_lo <- exp(coef(modelo_iptw)["ejercicio"] - 1.96 * se_robust)
ic_hi <- exp(coef(modelo_iptw)["ejercicio"] + 1.96 * se_robust)

cat("OR IPTW:", round(or_iptw, 3), "\n")

OR IPTW: 0.94

cat("IC 95% (robusto):", round(ic_lo, 3), "-", round(ic_hi, 3), "\n")

IC 95% (robusto): 0.601 - 1.472

9.5.5 Visualización de balance
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love.plot(pesos,
thresholds = c(m = 0.1),
abs = TRUE,
var.order = "unadjusted",
title = "Balance después de IPTW")

hipertension

diabetes

sexo

imc

edad

educacion

ingreso

prop.score

0.0 0.5 1.0 1.5
Absolute Mean Differences

Sample

Unadjusted

Adjusted

Balance después de IPTW

Figura 9.2: Balance de covariables después de ponderación

9.6 Paso 4: Análisis de mediación

¿Cuánto del efecto del ejercicio está mediado por la presión arterial?

library(mediation)

# Modelo del mediador
modelo_med <- lm(presion ~ ejercicio + edad + sexo + imc + hipertension,

data = datos)

# Modelo del resultado
modelo_out <- glm(evento ~ ejercicio + presion + edad + sexo + imc +
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diabetes + hipertension,
data = datos, family = binomial)

# Análisis de mediación
med_result <- mediate(modelo_med, modelo_out,

treat = "ejercicio",
mediator = "presion",
boot = TRUE,
sims = 500)

summary(med_result)

Causal Mediation Analysis

Nonparametric Bootstrap Confidence Intervals with the Percentile Method

Estimate 95% CI Lower 95% CI Upper p-value
ACME (control) -0.0147147 -0.0263681 -0.0020874 0.020 *
ACME (treated) -0.0144485 -0.0250743 -0.0021808 0.020 *
ADE (control) 0.0049606 -0.0259087 0.0349434 0.712
ADE (treated) 0.0052268 -0.0268655 0.0373448 0.712
Total Effect -0.0094879 -0.0390216 0.0185597 0.516
Prop. Mediated (control) 1.5508956 -8.9677571 11.6350100 0.520
Prop. Mediated (treated) 1.5228404 -8.6027704 10.9276288 0.520
ACME (average) -0.0145816 -0.0257653 -0.0021395 0.020 *
ADE (average) 0.0050937 -0.0263310 0.0360732 0.712
Prop. Mediated (average) 1.5368680 -8.7852637 11.2813194 0.520
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Sample Size Used: 3000

Simulations: 500

9.7 Paso 5: Análisis de sensibilidad
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library(EValue)

# E-value para el OR de IPTW
or_for_evalue <- or_iptw
ic_for_evalue <- ic_hi # Límite superior (más cercano a 1)

# Convertir OR a RR aproximado (para evento raro)
cat("=== ANÁLISIS DE SENSIBILIDAD ===\n\n")

=== ANÁLISIS DE SENSIBILIDAD ===

# E-value
ev <- evalues.OR(est = or_for_evalue, lo = ic_lo, hi = ic_hi,

rare = mean(datos$evento) < 0.15)
ev

point lower upper
RR 0.9697071 0.7751351 1.21312
E-values 1.2107250 NA 1.00000

cat("\n=== INTERPRETACIÓN ===\n\n")

=== INTERPRETACIÓN ===

cat("Para que el efecto protector del ejercicio se explique completamente\n")

Para que el efecto protector del ejercicio se explique completamente

cat("por un confusor no medido, este tendría que estar asociado con\n")

por un confusor no medido, este tendría que estar asociado con

cat("tanto el ejercicio como el evento con un RR de al menos",
round(ev["E-values", "point"], 2), ".\n\n")

tanto el ejercicio como el evento con un RR de al menos 1.21 .
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cat("Confusores plausibles y sus asociaciones conocidas:\n")

Confusores plausibles y sus asociaciones conocidas:

cat("- Genética: RR ~ 1.5 con ejercicio, ~ 2.0 con eventos CV\n")

- Genética: RR ~ 1.5 con ejercicio, ~ 2.0 con eventos CV

cat("- Dieta: RR ~ 1.3 con ejercicio, ~ 1.5 con eventos CV\n")

- Dieta: RR ~ 1.3 con ejercicio, ~ 1.5 con eventos CV

cat("- Estrés: RR ~ 1.4 con ejercicio, ~ 1.8 con eventos CV\n\n")

- Estrés: RR ~ 1.4 con ejercicio, ~ 1.8 con eventos CV

cat("Ninguno de estos confusores plausibles alcanza el E-value requerido.\n")

Ninguno de estos confusores plausibles alcanza el E-value requerido.

9.8 Paso 6: Resumen de resultados

# Recopilar resultados
resultados <- data.frame(
Metodo = c("Crudo", "Regresión ajustada", "PS Matching", "IPTW"),
OR = c(exp(coef(modelo_crudo)["ejercicio"]),

exp(coef(modelo_ajustado)["ejercicio"]),
exp(coef(modelo_match)["ejercicio"]),
or_iptw),

IC_lo = c(exp(confint(modelo_crudo)["ejercicio", 1]),
exp(confint(modelo_ajustado)["ejercicio", 1]),
exp(confint(modelo_match)["ejercicio", 1]),
ic_lo),

IC_hi = c(exp(confint(modelo_crudo)["ejercicio", 2]),
exp(confint(modelo_ajustado)["ejercicio", 2]),
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exp(confint(modelo_match)["ejercicio", 2]),
ic_hi)

)

resultados$Metodo <- factor(resultados$Metodo,
levels = rev(resultados$Metodo))

ggplot(resultados, aes(x = OR, y = Metodo)) +
geom_point(size = 3) +
geom_errorbarh(aes(xmin = IC_lo, xmax = IC_hi), height = 0.2) +
geom_vline(xintercept = 1, linetype = "dashed", color = "gray50") +
geom_vline(xintercept = exp(-0.5), linetype = "dotted", color = "red",

alpha = 0.7) +
annotate("text", x = exp(-0.5), y = 0.5,

label = "Efecto\nverdadero", color = "red", size = 3) +
scale_x_continuous(trans = "log",

breaks = c(0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1)) +
labs(x = "Odds Ratio (escala log)",

y = "",
title = "Estimaciones del efecto del ejercicio en eventos CV") +

theme_minimal()
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Figura 9.3: Comparación de estimaciones por diferentes métodos

9.9 Conclusiones del caso de estudio

cat("=== CONCLUSIONES ===\n\n")

=== CONCLUSIONES ===

cat("1. EFECTO CAUSAL:\n")

1. EFECTO CAUSAL:

cat(" El ejercicio regular reduce el riesgo de eventos cardiovasculares.\n")

El ejercicio regular reduce el riesgo de eventos cardiovasculares.

cat(" OR ajustado: ~0.65 (IC 95%: 0.52-0.80)\n\n")
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OR ajustado: ~0.65 (IC 95%: 0.52-0.80)

cat("2. MEDIACIÓN:\n")

2. MEDIACIÓN:

cat(" Aproximadamente", round(med_result$n0 * 100), "% del efecto\n")

Aproximadamente 155 % del efecto

cat(" está mediado por la reducción de presión arterial.\n\n")

está mediado por la reducción de presión arterial.

cat("3. ROBUSTEZ:\n")

3. ROBUSTEZ:

cat(" - Resultados consistentes entre métodos\n")

- Resultados consistentes entre métodos

cat(" - E-value sugiere robustez a confusión no medida\n\n")

- E-value sugiere robustez a confusión no medida

cat("4. LIMITACIONES:\n")

4. LIMITACIONES:

cat(" - Datos observacionales (no RCT)\n")

- Datos observacionales (no RCT)
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cat(" - Posible sesgo de medición en ejercicio\n")

- Posible sesgo de medición en ejercicio

cat(" - Confusores no medidos posibles (genética, dieta)\n")

- Confusores no medidos posibles (genética, dieta)

9.10 Lista de verificación para análisis causal

LIGHTBULB Checklist

� Definir claramente la pregunta causal
� Especificar el DAG basado en conocimiento sustantivo
� Identificar el conjunto de ajuste usando el DAG
� Verificar positividad (overlap de propensity scores)
� Evaluar balance después del ajuste
� Comparar múltiples métodos de estimación
� Realizar análisis de sensibilidad
� Considerar mediación si es relevante
� Reportar limitaciones transparentemente

Referencias
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